IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v58y2024i4d10.1007_s11135-023-01813-6.html
   My bibliography  Save this article

Modeling the impact of control strategies on malaria and COVID-19 coinfection: insights and implications for integrated public health interventions

Author

Listed:
  • Adesoye Idowu Abioye

    (University of Medical Sciences)

  • Olumuyiwa James Peter

    (University of Medical Sciences
    University of Medical Sciences)

  • Emmanuel Addai

    (Taiyuan University of Technology
    Taiyuan University of Technology)

  • Festus Abiodun Oguntolu

    (Federal University of Technology)

  • Tawakalt Abosede Ayoola

    (Osun State University)

Abstract

This work discusses the challenge posed by the simultaneous occurrence of malaria and COVID-19 coinfection on global health systems. We propose a novel fractional order mathematical model malaria and COVID-19 coinfection. To assess the impact of control strategies on both diseases, we consider two control strategies which are, personal protection against mosquito bites ( $$u_{1}(t)$$ u 1 ( t ) ) and preventive measures for COVID-19 ( $$u_{2}(t)$$ u 2 ( t ) ). Numerical simulations demonstrate that consistent application of these measures leads to significant reductions in disease transmission. Using insecticide-treated nets and repellents during day and night effectively reduces malaria transmission, while implementing facial masks and hand hygiene controls COVID-19 spread. The most substantial impact is observed when both sets of protection measures are simultaneously adopted, highlighting the importance of integrated strategies. The study provides valuable insights into malaria and COVID-19 coinfection dynamics and emphasizes the impact of the control measures. of individual behavior and consistent adoption of personal protection measures to control both diseases. It underscores the need for integrated public health interventions to combat the dual burden of malaria and COVID-19, contributing to the development of targeted and efficient control measures.

Suggested Citation

  • Adesoye Idowu Abioye & Olumuyiwa James Peter & Emmanuel Addai & Festus Abiodun Oguntolu & Tawakalt Abosede Ayoola, 2024. "Modeling the impact of control strategies on malaria and COVID-19 coinfection: insights and implications for integrated public health interventions," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(4), pages 3475-3495, August.
  • Handle: RePEc:spr:qualqt:v:58:y:2024:i:4:d:10.1007_s11135-023-01813-6
    DOI: 10.1007/s11135-023-01813-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-023-01813-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-023-01813-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ojo, Mayowa M. & Benson, Temitope O. & Peter, Olumuyiwa James & Goufo, Emile Franc Doungmo, 2022. "Nonlinear optimal control strategies for a mathematical model of COVID-19 and influenza co-infection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    2. Kassahun Getnet Mekonen & Shiferaw Feyissa Balcha & Legesse Lemecha Obsu & Abdulkadir Hassen, 2022. "Mathematical Modeling and Analysis of TB and COVID-19 Coinfection," Journal of Applied Mathematics, Hindawi, vol. 2022, pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ojo, Mayowa M. & Peter, Olumuyiwa James & Goufo, Emile Franc Doungmo & Nisar, Kottakkaran Sooppy, 2023. "A mathematical model for the co-dynamics of COVID-19 and tuberculosis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 499-520.
    2. Ahmed M. Elaiw & Afnan D. Al Agha, 2023. "Analysis of the In-Host Dynamics of Tuberculosis and SARS-CoV-2 Coinfection," Mathematics, MDPI, vol. 11(5), pages 1-24, February.
    3. Mukhtar, Roshana & Chang, Chuan-Yu & Raja, Muhammad Asif Zahoor & Chaudhary, Naveed Ishtiaq & Shu, Chi-Min, 2024. "Novel nonlinear fractional order Parkinson's disease model for brain electrical activity rhythms: Intelligent adaptive Bayesian networks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    4. Ali Algarni & Afnan D. Al Agha & Aisha Fayomi & Hakim Al Garalleh, 2023. "Kinetics of a Reaction-Diffusion Mtb/SARS-CoV-2 Coinfection Model with Immunity," Mathematics, MDPI, vol. 11(7), pages 1-25, April.
    5. Omame, Andrew & Abbas, Mujahid, 2023. "Modeling SARS-CoV-2 and HBV co-dynamics with optimal control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:58:y:2024:i:4:d:10.1007_s11135-023-01813-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.