Epidemic Dynamics of Two-Pathogen Spreading for Pairwise Models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Maliyoni, Milliward & Chirove, Faraimunashe & Gaff, Holly D. & Govinder, Keshlan S., 2019. "A stochastic epidemic model for the dynamics of two pathogens in a single tick population," Theoretical Population Biology, Elsevier, vol. 127(C), pages 75-90.
- M. De la Sen & R. Nistal & S. Alonso-Quesada & A. Ibeas, 2019. "Some Formal Results on Positivity, Stability, and Endemic Steady-State Attainability Based on Linear Algebraic Tools for a Class of Epidemic Models with Eventual Incommensurate Delays," Discrete Dynamics in Nature and Society, Hindawi, vol. 2019, pages 1-22, July.
- Wang, Haiying & Moore, Jack Murdoch & Small, Michael & Wang, Jun & Yang, Huijie & Gu, Changgui, 2022. "Epidemic dynamics on higher-dimensional small world networks," Applied Mathematics and Computation, Elsevier, vol. 421(C).
- Eames, K.T.D., 2008. "Modelling disease spread through random and regular contacts in clustered populations," Theoretical Population Biology, Elsevier, vol. 73(1), pages 104-111.
- Gavin J. D. Smith & Dhanasekaran Vijaykrishna & Justin Bahl & Samantha J. Lycett & Michael Worobey & Oliver G. Pybus & Siu Kit Ma & Chung Lam Cheung & Jayna Raghwani & Samir Bhatt & J. S. Malik Peiris, 2009. "Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic," Nature, Nature, vol. 459(7250), pages 1122-1125, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mario Arturo Ruiz Estrada & Evangelos Koutronas & Donghyun Park & Alam Khan & Muhammad Tahir, 2023. "The impact of COVID-19 on the economic performance of Wuhan, China (2019–2021)," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(1), pages 847-862, February.
- Igor Balaz & Taichi Haruna, 2018. "Evolution Of Influenza A Nucleotide Segments Through The Lens Of Different Complexity Measures," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(05), pages 1-24, August.
- Guo, Zun-Guang & Sun, Gui-Quan & Wang, Zhen & Jin, Zhen & Li, Li & Li, Can, 2020. "Spatial dynamics of an epidemic model with nonlocal infection," Applied Mathematics and Computation, Elsevier, vol. 377(C).
- Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
- Duncan, A.J. & Gunn, G.J. & Umstatter, C. & Humphry, R.W., 2014. "Replicating disease spread in empirical cattle networks by adjusting the probability of infection in random networks," Theoretical Population Biology, Elsevier, vol. 98(C), pages 11-18.
- Cecilia Solér, 2012. "Conceptualizing Sustainably Produced Food for Promotional Purposes: A Sustainable Marketing Approach," Sustainability, MDPI, vol. 4(3), pages 1-47, March.
- Florin Avram & Rim Adenane & Lasko Basnarkov & Gianluca Bianchin & Dan Goreac & Andrei Halanay, 2023. "An Age of Infection Kernel, an R Formula, and Further Results for Arino–Brauer A , B Matrix Epidemic Models with Varying Populations, Waning Immunity, and Disease and Vaccination Fatalities," Mathematics, MDPI, vol. 11(6), pages 1-21, March.
- Carmen Legarreta & Manuel De la Sen & Santiago Alonso-Quesada, 2024. "On the Properties of a Newly Susceptible, Non-Seriously Infected, Hospitalized, and Recovered Subpopulation Epidemic Model," Mathematics, MDPI, vol. 12(2), pages 1-34, January.
- Fome, Anna Daniel & Bock, Wolfgang & Klar, Axel, 2025. "Analysis of a competitive respiratory disease system with quarantine: Epidemic thresholds and cross-immunity effects," Applied Mathematics and Computation, Elsevier, vol. 485(C).
- Goulas, Sofoklis & Megalokonomou, Rigissa, 2016. "Swine Flu and The Effect of Compulsory Class Attendance on Academic Performance," MPRA Paper 75395, University Library of Munich, Germany.
- Finlay Campbell & Anne Cori & Neil Ferguson & Thibaut Jombart, 2019. "Bayesian inference of transmission chains using timing of symptoms, pathogen genomes and contact data," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-20, March.
More about this item
Keywords
epidemic threshold; pairwise models; multiple pathogens; co-infection;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:11:p:1906-:d:830487. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.