IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v480y2024ics0096300324003655.html
   My bibliography  Save this article

Fixed-time adaptive neural tracking control for high-order nonlinear switched systems with input saturation and dead-zone

Author

Listed:
  • Wang, Huanqing
  • Meng, Zhu

Abstract

This article investigates the problem of tracking control for high-order switched nonlinear systems with input saturation and dead-zone. The uncertain nonlinear functions are estimated via applying radial basis function neural networks (RBF NNs). An improved transformation approach is designed to simplify the design complexity caused by input nonlinearities. In particular, a novel filter is presented to handle the difficulty of “explosion of complexity”. With the support of the common Lyapunov function (CLF) approach, a novel neural fixed-time dynamic surface control (DSC) scheme is proposed to assure all the signals in closed-loop systems are bounded and the output signal tracks the expected signal within fixed time. The simulation example illustrates the validity of the proposed control algorithm.

Suggested Citation

  • Wang, Huanqing & Meng, Zhu, 2024. "Fixed-time adaptive neural tracking control for high-order nonlinear switched systems with input saturation and dead-zone," Applied Mathematics and Computation, Elsevier, vol. 480(C).
  • Handle: RePEc:eee:apmaco:v:480:y:2024:i:c:s0096300324003655
    DOI: 10.1016/j.amc.2024.128904
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324003655
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128904?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Yifan & Liu, Wenhui, 2023. "Adaptive fuzzy dynamic surface control for nonstrict-feedback nonlinear state constrained systems with input dead-zone via event-triggered sampling," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    2. Sui, Shuai & Yu, Yuelei & Tong, Shaocheng & Philip Chen, C.L., 2024. "Event-triggered robust fuzzy adaptive control for non-strict feedback nonlinear system with prescribed performance," Applied Mathematics and Computation, Elsevier, vol. 474(C).
    3. Wu, Meng & Wu, Li-Bing & Wang, Pu, 2024. "Event-triggered adaptive leaderless consensus control for nonlinear multi-agent systems with unknown dead-zones and output constraints," Applied Mathematics and Computation, Elsevier, vol. 469(C).
    4. Zhang, Haoyue & Ding, Shihong, 2023. "Adaptive asymptotic tracking control design for high-order uncertain nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 445(C).
    5. Wang, Le & Sun, Wei & Su, Shun-Feng, 2022. "Adaptive asymptotic tracking control for nonlinear systems with state constraints and input saturation," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    6. Peng, Runlong & Guo, Rongwei & Zheng, Bin & Miao, Zhonghua & Zhou, Jin, 2024. "Neural network-based robust consensus tracking for uncertain networked Euler-Lagrange systems with time-varying delays and output constraints," Applied Mathematics and Computation, Elsevier, vol. 468(C).
    7. Mei, Keqi & Ma, Li & He, Runxin & Ding, Shihong, 2020. "Finite-time controller design of multiple integrator nonlinear systems with input saturation," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    8. Luo, Peng & Wu, Defeng & Yamashita, Andre S. & Feng, Na & Yang, Yang, 2024. "Observer-based fixed-time dynamic surface tracking control for autonomous surface vehicles under actuator constraints and denial-of-service attacks," Applied Mathematics and Computation, Elsevier, vol. 465(C).
    9. Peng, Yanru & Xu, Shengyuan, 2023. "Adaptive tracking control for a class of stochastic nonlinear systems with full-state constraints and dead-zone," Applied Mathematics and Computation, Elsevier, vol. 452(C).
    10. Liu, Wei & Fei, Shiqi & Ma, Qian & Zhao, Huanyu & Xu, Shengyuan, 2022. "Prescribed performance dynamic surface control for nonlinear systems subject to partial and full state constraints," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Tianyu & Xiang, Zhengrong, 2024. "Asymptotic tracking control for a class of uncertain nonlinear systems with output constraint," Applied Mathematics and Computation, Elsevier, vol. 478(C).
    2. Mei, Keqi & Ding, Shihong, 2022. "Output-feedback finite-time stabilization of a class of constrained planar systems," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    3. Ding, Hongfei & Wang, Yudong & Shen, Hao, 2024. "A reinforcement learning integral sliding mode control scheme against lumped disturbances in hot strip rolling," Applied Mathematics and Computation, Elsevier, vol. 465(C).
    4. Ding, Chen & Ma, Li & Ding, Shihong, 2021. "Second-order sliding mode controller design with mismatched term and time-varying output constraint," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    5. Guo, Ming-Juan & Li, Yuan-Xin, 2024. "Estimator-based adaptive prescribed performance cooperative bipartite containment control of nonlinear multiagent system against DoS attacks," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    6. Yue, Xiaohui & Shao, Xingling & Li, Jie, 2021. "Prescribed chattering reduction control for quadrotors using aperiodic signal updating," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    7. Du, Haibo & Yu, Bo & Wei, Jiajia & Zhang, Jun & Wu, Di & Tao, Weiqing, 2020. "Attitude trajectory planning and attitude control for quad-rotor aircraft based on finite-time control technique," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    8. Yuan, Guangxia & Zhang, Zhengqiang, 2024. "Event-triggered adaptive prescribed performance tracking for nonlinear time-varying systems with unknown control directions," Applied Mathematics and Computation, Elsevier, vol. 463(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:480:y:2024:i:c:s0096300324003655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.