IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v474y2024ics0096300324001735.html
   My bibliography  Save this article

Event-triggered robust fuzzy adaptive control for non-strict feedback nonlinear system with prescribed performance

Author

Listed:
  • Sui, Shuai
  • Yu, Yuelei
  • Tong, Shaocheng
  • Philip Chen, C.L.

Abstract

This paper addresses a class of uncertain non-strict feedback nonlinear systems and proposes an event-triggered fuzzy adaptive prescribed performance control (PPC) strategy. Fuzzy logic systems (FLSs) are employed to approximate unknown smooth functions. In the control design, an event-triggered mechanism (ETM) from sensor-to-controller is introduced to economize on unnecessary transmission and communication resources. Additionally, a novel performance function is constructed to bound tracking errors, and a series of error transformations are devised to convert the “constrained” system into an equivalent “unconstrained” system. The proposed control strategy ensures that all signals in the closed-loop system have semi-globally uniformly bounded stability. Moreover, prescribed performance bounds ensure output tracking with minimal (or even zero) overshoot. Finally, the effectiveness and practicality of the proposed control method are validated through comparative simulations.

Suggested Citation

  • Sui, Shuai & Yu, Yuelei & Tong, Shaocheng & Philip Chen, C.L., 2024. "Event-triggered robust fuzzy adaptive control for non-strict feedback nonlinear system with prescribed performance," Applied Mathematics and Computation, Elsevier, vol. 474(C).
  • Handle: RePEc:eee:apmaco:v:474:y:2024:i:c:s0096300324001735
    DOI: 10.1016/j.amc.2024.128701
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324001735
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128701?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Zhongyu & Niu, Ben & Zhao, Xudong & Zhang, Liang & Xu, Ning, 2021. "Model-Based adaptive event-Triggered control of nonlinear continuous-Time systems," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    2. Xu, Ning & Zhao, Xudong & Zong, Guangdeng & Wang, Yuanqing, 2021. "Adaptive control design for uncertain switched nonstrict-feedback nonlinear systems to achieve asymptotic tracking performance," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    3. Xu, Ke & Wang, Huanqing & Liu, Peter Xiaoping, 2023. "Adaptive fuzzy finite-time tracking control of nonlinear systems with unmodeled dynamics," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Huanqing & Meng, Zhu, 2024. "Fixed-time adaptive neural tracking control for high-order nonlinear switched systems with input saturation and dead-zone," Applied Mathematics and Computation, Elsevier, vol. 480(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ju, Xinxu & Jia, Xianglei & Shi, Xiaocheng & Yu, Shan’en, 2022. "Adaptive output feedback event-triggered tracking control for nonlinear systems with unknown control coefficient," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    2. Xia, Mingli & Liu, Linna & Fang, Jianyin & Qu, Boyang, 2024. "Exponentially weighted input-to-state stability of stochastic differential systems via event-triggered impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    3. Ding, Hongfei & Wang, Yudong & Shen, Hao, 2024. "A reinforcement learning integral sliding mode control scheme against lumped disturbances in hot strip rolling," Applied Mathematics and Computation, Elsevier, vol. 465(C).
    4. Lu, Ji-Jing & Xiong, Jun, 2024. "Energy-to-peak quantized filtering for T-S fuzzy systems with event-triggered-based weighted try-once-discard protocol: The finite-time case," Applied Mathematics and Computation, Elsevier, vol. 483(C).
    5. Xu, Ning & Zhao, Xudong & Zong, Guangdeng & Wang, Yuanqing, 2021. "Adaptive control design for uncertain switched nonstrict-feedback nonlinear systems to achieve asymptotic tracking performance," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    6. Chen, Zhongyu & Niu, Ben & Zhao, Xudong & Zhang, Liang & Xu, Ning, 2021. "Model-Based adaptive event-Triggered control of nonlinear continuous-Time systems," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    7. Wu, Jing & Sun, Wei & Su, Shun-Feng & Xia, Jianwei, 2022. "Neural-based adaptive control for nonlinear systems with quantized input and the output constraint," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    8. Yan, Yan & Wu, Libing & Yan, Weijun & Hu, Yuhan & Zhao, Nannan & Chen, Ming, 2022. "Finite-time event-triggered fault-tolerant control for a family of pure-feedback systems," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    9. Liu, Yanli & Hao, Li-Ying, 2024. "Adaptive tracking control for constrained nonlinear nonstrict-feedback switched stochastic systems with unknown control directions," Applied Mathematics and Computation, Elsevier, vol. 473(C).
    10. Huang, Tao & Shao, Yiyu & Li, Liwei & Liu, Yajuan & Shen, Mouquan, 2024. "Guaranteed cost event-triggered H∞ control of uncertain linear system via output disturbance observer," Applied Mathematics and Computation, Elsevier, vol. 473(C).
    11. Cui, Di & Zou, Wencheng & Guo, Jian & Xiang, Zhengrong, 2022. "Neural network-based adaptive finite-time tracking control of switched nonlinear systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 428(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:474:y:2024:i:c:s0096300324001735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.