IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v386y2020ics0096300320304513.html
   My bibliography  Save this article

Attitude trajectory planning and attitude control for quad-rotor aircraft based on finite-time control technique

Author

Listed:
  • Du, Haibo
  • Yu, Bo
  • Wei, Jiajia
  • Zhang, Jun
  • Wu, Di
  • Tao, Weiqing

Abstract

The attitude control problem for quad-rotor spacecraft is investigated in this paper. Considering the yaw dynamical rate is slower than that of roll and pitch channel, firstly, we establish the attitude trajectory and then propose an attitude decoupled control strategy. For the specific attitude controller design, we design a finite-time attitude tracking controller based on the finite-time control technology. The rigorous stability analysis method based on homogeneous system theory is given, which proves that spacecraft attitude can reach the expected attitude in a finite time. Experimental results on a real quad-rotor platform show that the proposed control strategy has the advantages of convergence and strong disturbance rejection ability.

Suggested Citation

  • Du, Haibo & Yu, Bo & Wei, Jiajia & Zhang, Jun & Wu, Di & Tao, Weiqing, 2020. "Attitude trajectory planning and attitude control for quad-rotor aircraft based on finite-time control technique," Applied Mathematics and Computation, Elsevier, vol. 386(C).
  • Handle: RePEc:eee:apmaco:v:386:y:2020:i:c:s0096300320304513
    DOI: 10.1016/j.amc.2020.125493
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320304513
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125493?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Liandi & Ma, Li & Ding, Shihong & Zhao, Dean, 2019. "Finite-time stabilization for a class of high-order stochastic nonlinear systems with an output constraint," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 63-79.
    2. Qi, Wenhai & Zong, Guangdeng & Cheng, Jun & Jiao, Ticao, 2019. "Robust finite-time stabilization for positive delayed semi-Markovian switching systems," Applied Mathematics and Computation, Elsevier, vol. 351(C), pages 139-152.
    3. He, Xiaoyan & Wang, Qingyun & Yu, Wenwu, 2015. "Finite-time distributed cooperative attitude tracking control for multiple rigid spacecraft," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 724-734.
    4. Qinghua Meng & Tingting Zhao & Chunjiang Qian & Zong-yao Sun & Panpan Ge, 2018. "Integrated stability control of AFS and DYC for electric vehicle based on non-smooth control," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(7), pages 1518-1528, May.
    5. Mei, Keqi & Ma, Li & He, Runxin & Ding, Shihong, 2020. "Finite-time controller design of multiple integrator nonlinear systems with input saturation," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    6. Wu, Kai-Ning & Na, Ming-Ye & Wang, Liming & Ding, Xiaohua & Wu, Boying, 2019. "Finite-time stability of impulsive reaction-diffusion systems with and without time delay," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    7. Li, Haitao & Xu, Xiaojing & Ding, Xueying, 2019. "Finite-time stability analysis of stochastic switched boolean networks with impulsive effect," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 557-565.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Fang & Gao, Yali & Zhou, Chao & Zong, Qun, 2022. "Disturbance observer-based backstepping formation control of multiple quadrotors with asymmetric output error constraints," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    2. Liu, Lu & Ding, Shihong, 2021. "A unified control approach to finite-time stabilization of SOSM dynamics subject to an output constraint," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    3. Khalid A. Alattas & Mai The Vu & Omid Mofid & Fayez F. M. El-Sousy & Afef Fekih & Saleh Mobayen, 2022. "Barrier Function-Based Nonsingular Finite-Time Tracker for Quadrotor UAVs Subject to Uncertainties and Input Constraints," Mathematics, MDPI, vol. 10(10), pages 1-16, May.
    4. Yue, Xiaohui & Shao, Xingling & Li, Jie, 2021. "Prescribed chattering reduction control for quadrotors using aperiodic signal updating," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    5. Wang, Di & Liu, Can & Ding, Dawei & Gao, Suixiang & Chu, Ming, 2022. "Finite-time optimal tracking control using augmented error system method," Applied Mathematics and Computation, Elsevier, vol. 424(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mei, Keqi & Ding, Shihong, 2022. "Output-feedback finite-time stabilization of a class of constrained planar systems," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    2. Yao, Hejun & Gao, Fangzheng & Huang, Jiacai & Wu, Yuqiang, 2021. "Global prescribed-time stabilization via time-scale transformation for switched nonlinear systems subject to switching rational powers," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    3. Wang, Jinling & Liang, Jinling & Zhang, Cheng-Tang & Fan, Dongmei, 2021. "Event-triggered non-fragile control for uncertain positive Roesser model with PDT switching mechanism," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    4. Xie, Jiyang & Zhu, Shuqian & Feng, Jun-e, 2020. "Delay-dependent and decay-rate-dependent conditions for exponential mean stability and non-fragile controller design of positive Markov jump linear systems with time-delay," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    5. Li, Shuo & Xiang, Zhengrong, 2020. "Positivity, exponential stability and disturbance attenuation performance for singular switched positive systems with time-varying distributed delays," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    6. Xiangshan Kong & Qilong Sun & Haitao Li, 2022. "Survey on Mathematical Models and Methods of Complex Logical Dynamical Systems," Mathematics, MDPI, vol. 10(20), pages 1-17, October.
    7. Zhang, Shuo & Liu, Lu & Xue, Dingyu, 2020. "Nyquist-based stability analysis of non-commensurate fractional-order delay systems," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    8. Xing, Ying & He, Xinyi & Li, Xiaodi, 2023. "Lyapunov conditions for finite-time stability of disturbed nonlinear impulsive systems," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    9. Zhu, Sanmei & Feng, Jun-e, 2021. "The set stabilization problem for Markovian jump Boolean control networks: An average optimal control approach," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    10. Li, Zhao-Yan & Shang, Shengnan & Lam, James, 2019. "On stability of neutral-type linear stochastic time-delay systems with three different delays," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 147-166.
    11. Wang, Yong & Zhong, Jie & Pan, Qinyao & Li, Ning, 2024. "Minimal pinning control for set stability of Boolean networks," Applied Mathematics and Computation, Elsevier, vol. 465(C).
    12. Liu, Yansheng & Song, Mengjin & Li, Haitao & Li, Yalu & Hou, Wenying, 2021. "Containment problem of finite-field networks with fixed and switching topology," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    13. Yang, Chengyu & Li, Fei & Kong, Qingkai & Chen, Xiangyong & Wang, Jian, 2021. "Asynchronous fault-tolerant control for stochastic jumping singularly perturbed systems: An H∞ sliding mode control scheme," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    14. Li, Yalu & Li, Haitao & Li, Yuanyuan, 2021. "Constrained set controllability of logical control networks with state constraints and its applications," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    15. He, Xiaoyan & Wang, Qingyun, 2017. "Distributed finite-time leaderless consensus control for double-integrator multi-agent systems with external disturbances," Applied Mathematics and Computation, Elsevier, vol. 295(C), pages 65-76.
    16. Du, Leihao & Zhang, Zhipeng & Xia, Chengyi, 2023. "A state-flipped approach to complete synchronization of Boolean networks," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    17. Peng, Yuanyuan & Fan, Jinjun & Gao, Min & Li, Jianping, 2021. "Discontinuous dynamics of an asymmetric 2-DOF friction oscillator with elastic and rigid impacts," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    18. Wang, Yingchun & Zhang, Jiaxin & Zhang, Huaguang & Xie, Xiangpeng, 2021. "Finite-time adaptive neural control for nonstrict-feedback stochastic nonlinear systems with input delay and output constraints," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    19. Yang, Xinrong & Sun, Qilong & Li, Haitao & Kong, Xiangshan, 2023. "Set stabilizability of impulsive probabilistic Boolean networks via impulsive sequence design," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    20. He, Xiaoyan & Hao, Yuqing & Wang, Qingyun, 2019. "Leaderless finite-time consensus for second-order Lipschitz nonlinear multi-agent systems with settling time estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 280-289.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:386:y:2020:i:c:s0096300320304513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.