IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v467y2024ics0096300323006598.html
   My bibliography  Save this article

Behaviors of matrix-weighted networks with antagonistic interactions

Author

Listed:
  • Miao, Suoxia
  • Su, Housheng

Abstract

This essay considers the bipartite consensus of matrix-weighted second-order multi-agent systems with structurally unbalanced antagonistic interactions networks. Owing to the influence of matrix-weights, bipartite consensus and cluster bipartite consensus can also be reached, which is different from the existing works on signed networks. With the assistance of Lyapunov stability and matrix-valued Gauge transformation, a condition to achieve bipartite consensus is established. Moreover, a relatively straightforward algebraic graph condition for reaching cluster bipartite consensus is attained. Finally, simulation examples are supplied to illustrate the obtained results.

Suggested Citation

  • Miao, Suoxia & Su, Housheng, 2024. "Behaviors of matrix-weighted networks with antagonistic interactions," Applied Mathematics and Computation, Elsevier, vol. 467(C).
  • Handle: RePEc:eee:apmaco:v:467:y:2024:i:c:s0096300323006598
    DOI: 10.1016/j.amc.2023.128490
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323006598
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.128490?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niu, Yichun & Gao, Ming & Sheng, Li, 2022. "Fault-tolerant state estimation for stochastic systems over sensor networks with intermittent sensor faults," Applied Mathematics and Computation, Elsevier, vol. 416(C).
    2. Liu, Bo & Su, Housheng & Wu, Licheng & Shen, Xixi, 2021. "Controllability for multi-agent systems with matrix-weight-based signed network," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    3. Wang, Fang & Gao, Yali & Zhou, Chao & Zong, Qun, 2022. "Disturbance observer-based backstepping formation control of multiple quadrotors with asymmetric output error constraints," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    4. Du, Yingxue & Wang, Yijing & Zuo, Zhiqiang & Zhang, Wentao, 2022. "Event-triggered bipartite consensus for multi-agent systems subject to multiplicative and additive noises," Applied Mathematics and Computation, Elsevier, vol. 429(C).
    5. Yang, Haijiao & Ye, Dan, 2020. "Time-varying formation tracking control for high-order nonlinear multi-agent systems in fixed-time framework," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Haoxiang & Xiong, Shixun & Fu, Zhumu & Tao, Fazhan & Ji, Baofeng, 2024. "High-order disturbance observer-based safe tracking control for a class of uncertain MIMO nonlinear systems with time-varying full state constraints," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    2. Yao, Hejun & Gao, Fangzheng & Huang, Jiacai & Wu, Yuqiang, 2021. "Global prescribed-time stabilization via time-scale transformation for switched nonlinear systems subject to switching rational powers," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    3. Cui, Guozeng & Xu, Hui & Yu, Jinpeng & Ma, Jiali & Li, Ze, 2023. "Fixed-time distributed adaptive attitude control for multiple QUAVs with quantized input," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    4. Kairui Chen & Zhangmou Zhu & Xianxian Zeng & Junwei Wang, 2023. "Distributed Observers for State Omniscience with Stochastic Communication Noises," Mathematics, MDPI, vol. 11(9), pages 1-14, April.
    5. Wang, Le & Sun, Wei & Su, Shun-Feng, 2022. "Adaptive asymptotic tracking control for nonlinear systems with state constraints and input saturation," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    6. Wang, Duo & Sipahi, Rifat, 2024. "Betweenness centrality can inform stability and delay margin in a large-scale connected vehicle system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    7. Xu, Lin-Xing & Wang, Yu-Long & Wang, Fei & Long, Yue, 2023. "Event-triggered active disturbance rejection trajectory tracking control for a quadrotor unmanned aerial vehicle," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    8. Luo, Mei & Wang, JinRong & Meng, Deyuan, 2023. "Stochastic convergence problems on switching networks: An event-triggered method," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    9. Li, Weihua & Zhang, Huaguang & Wang, Wei & Cao, Zhengbao, 2022. "Fully distributed event-triggered time-varying formation control of multi-agent systems subject to mode-switching denial-of-service attacks," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    10. Vadivoo, B.S. & Jothilakshmi, G. & Almalki, Y. & Debbouche, A. & Lavanya, M., 2022. "Relative controllability analysis of fractional order differential equations with multiple time delays," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    11. Gao, Ming & Niu, Yichun & Sheng, Li & Zhou, Donghua, 2022. "Quantitative analysis of incipient fault detectability for time-varying stochastic systems based on weighted moving average approach," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    12. Jianing Cao & Hua Chen, 2023. "Mathematical Model for Fault Handling of Singular Nonlinear Time-Varying Delay Systems Based on T-S Fuzzy Model," Mathematics, MDPI, vol. 11(11), pages 1-13, June.
    13. Xiongfeng Deng & Yiqing Huang & Lisheng Wei, 2022. "Adaptive Fuzzy Command Filtered Finite-Time Tracking Control for Uncertain Nonlinear Multi-Agent Systems with Unknown Input Saturation and Unknown Control Directions," Mathematics, MDPI, vol. 10(24), pages 1-22, December.
    14. Xu, Ziqiang & Li, Yun & Zhan, Xisheng & Yan, Huaicheng & Han, Yiyan, 2024. "Time-varying formation of uncertain nonlinear multi-agent systems via adaptive feedback control approach with event-triggered impulsive estimator," Applied Mathematics and Computation, Elsevier, vol. 475(C).
    15. Wang, Xin & Zhai, Shidong & Luo, Guoqiang & Huang, Tao, 2022. "Cluster synchronization in a network of nonlinear systems with directed topology and competitive relationships," Applied Mathematics and Computation, Elsevier, vol. 421(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:467:y:2024:i:c:s0096300323006598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.