IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v424y2022ics0096300322001175.html
   My bibliography  Save this article

Leader-Following consensus of nonlinear multi-agent systems with hybrid delays: Distributed impulsive pinning strategy

Author

Listed:
  • Wang, Kun-Peng
  • Ding, Dong
  • Tang, Ze
  • Feng, Jianwen

Abstract

The leader-following consensus problem of a type of nonlinear multi-agent systems with both general time-varying delay and distributed time-varying delay is investigated in this paper. To realize the global and exponential consensus, a kind of effective distributed impulsive pinning control strategy is proposed. Adequate conditions are derived to assure the consensus by applying the average impulsive interval, the comparison principle with hybrid time-varying delays, and the method of parametric variation. Considering that the impulse could not only be beneficial but also be adverse to the final consensus, the positive and negative impulsive effects are studied in detail, respectively, and the larger ranges of impulsive effects are obtained. Correspondingly, by considering the impulsive effects in different situations, different convergence rates are accurately calculated. In addition, the validity of the control strategy proposed in this paper is verified based on the simulation examples.

Suggested Citation

  • Wang, Kun-Peng & Ding, Dong & Tang, Ze & Feng, Jianwen, 2022. "Leader-Following consensus of nonlinear multi-agent systems with hybrid delays: Distributed impulsive pinning strategy," Applied Mathematics and Computation, Elsevier, vol. 424(C).
  • Handle: RePEc:eee:apmaco:v:424:y:2022:i:c:s0096300322001175
    DOI: 10.1016/j.amc.2022.127031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322001175
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Jingting & Sui, Guixia & Li, Xiaodi, 2020. "Fixed-time synchronization of complex networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Yuan, Xiaolin & Mo, Lipo & Yu, Yongguang & Ren, Guojian, 2021. "Containment control of fractional discrete-time multi-agent systems with nonconvex constraints," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    3. Liu, Xiwei & Chen, Tianping, 2008. "Synchronization analysis for nonlinearly-coupled complex networks with an asymmetrical coupling matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4429-4439.
    4. Kaviarasan, Boomipalagan & Kwon, Oh-Min & Park, Myeong Jin & Sakthivel, Rathinasamy, 2021. "Stochastic faulty estimator-based non-fragile tracking controller for multi-agent systems with communication delay," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    5. Li, Zheng & Wang, Fang & Zhu, Ruitai, 2021. "Finite-time adaptive neural control of nonlinear systems with unknown output hysteresis," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    6. Wang, Xiaoling & Su, Housheng, 2020. "Completely model-free RL-based consensus of continuous-time multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Ziqiang & Li, Yun & Zhan, Xisheng & Yan, Huaicheng & Han, Yiyan, 2024. "Time-varying formation of uncertain nonlinear multi-agent systems via adaptive feedback control approach with event-triggered impulsive estimator," Applied Mathematics and Computation, Elsevier, vol. 475(C).
    2. Wang, Boyu & Zhang, Yijun & Wei, Miao, 2023. "Fixed-time leader-following consensus of multi-agent systems with intermittent control," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    3. Gao, Shanshan & Zhang, Shenggui & Chen, Xinzhuang & Song, Xiaodi, 2023. "Effects of adding arcs on the consensus convergence rate of leader-follower multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 453(C).
    4. Chen, Boxun & Tang, Ze & Feng, Jianwen, 2024. "Matrix measure-based event-triggered consensus of multi-agent systems with hybrid time delays," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    5. Xu, Bingchu & Yang, Yongqing, 2022. "Group consensus of nonlinear multiagent system with switching topology under DoS attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arinushkin, P.A. & Vadivasova, T.E., 2021. "Nonlinear damping effects in a simplified power grid model based on coupled Kuramoto-like oscillators with inertia," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Li, Baoxing & Han, Tao & Xiao, Bo & Zhan, Xi-Sheng & Yan, Huaicheng, 2022. "Leader-following bipartite consensus of multiple uncertain Euler-Lagrange systems under deception attacks," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    3. Wu, Ziwen & Zhang, Tianping & Xia, Xiaonan & Hua, Yu, 2022. "Finite-time adaptive neural command filtered control for non-strict feedback uncertain multi-agent systems including prescribed performance and input nonlinearities," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    4. Liu, Shanlin & Niu, Ben & Zong, Guangdeng & Zhao, Xudong & Xu, Ning, 2022. "Adaptive fixed-time hierarchical sliding mode control for switched under-actuated systems with dead-zone constraints via event-triggered strategy," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    5. Yuxuan Liu, 2024. "Command-Filtered Nussbaum Design for Nonlinear Systems with Unknown Control Direction and Input Constraints," Mathematics, MDPI, vol. 12(14), pages 1-17, July.
    6. Tseng, Jui-Pin, 2016. "A novel approach to synchronization of nonlinearly coupled network systems with delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 266-280.
    7. Bin Li & Jiahao Zhu & Ranran Zhou & Guoxing Wen, 2022. "Adaptive Neural Network Sliding Mode Control for a Class of SISO Nonlinear Systems," Mathematics, MDPI, vol. 10(7), pages 1-12, April.
    8. Jie Liu & Jian-Ping Sun, 2024. "Clustering Component Synchronization of Nonlinearly Coupled Complex Networks via Pinning Control," Mathematics, MDPI, vol. 12(7), pages 1-17, March.
    9. Du, Feifei & Lu, Jun-Guo, 2021. "Explicit solutions and asymptotic behaviors of Caputo discrete fractional-order equations with variable coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    10. Chen, Xi & Luo, Maokang & Zhong, Yangfan & Zhang, Lu, 2022. "Collective dynamic behaviors of a general adjacent coupled chain in both unconfined and confined spaces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    11. Hu, Aihua & Cao, Jinde & Hu, Manfeng & Guo, Liuxiao, 2014. "Cluster synchronization in directed networks of non-identical systems with noises via random pinning control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 537-548.
    12. Zhang, Hai & Ye, Miaolin & Ye, Renyu & Cao, Jinde, 2018. "Synchronization stability of Riemann–Liouville fractional delay-coupled complex neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 155-165.
    13. Assali, El Abed, 2021. "Predefined-time synchronization of chaotic systems with different dimensions and applications," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    14. Cheng, Ranran & Peng, Mingshu & Yu, Weibin, 2014. "Pinning synchronization of delayed complex dynamical networks with nonlinear coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 426-431.
    15. Tao Xie & Qike Zhang & Xing Xiong, 2024. "Edge-Based Synchronization Control Criteria of Complex Dynamical Networks with Reaction–Diffusions," Mathematics, MDPI, vol. 12(12), pages 1-18, June.
    16. Xuan, Deli & Tang, Ze & Feng, Jianwen & Park, Ju H., 2021. "Cluster synchronization of nonlinearly coupled Lur’e networks: Delayed impulsive adaptive control protocols," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    17. Zhang, Guodong & Cao, Jinde, 2023. "New results on fixed/predefined-time synchronization of delayed fuzzy inertial discontinuous neural networks: Non-reduced order approach," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    18. Masroor, Suhaib & Peng, Chen, 2022. "An agent based observer model of the networked DC drives for speed coordination," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    19. Cheng, Lin & Yang, Yongqing & Li, Li & Sui, Xin, 2018. "Finite-time hybrid projective synchronization of the drive-response complex networks with distributed-delay via adaptive intermittent control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 273-286.
    20. Shi, Lin & Gou, Kuixiang & Xie, Dongmei, 2021. "Convergence analysis of first-order discrete multi-agent systems with cooperative-competitive mechanisms," Applied Mathematics and Computation, Elsevier, vol. 410(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:424:y:2022:i:c:s0096300322001175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.