IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v414y2022ics0096300321007293.html
   My bibliography  Save this article

Fully distributed event-triggered time-varying formation control of multi-agent systems subject to mode-switching denial-of-service attacks

Author

Listed:
  • Li, Weihua
  • Zhang, Huaguang
  • Wang, Wei
  • Cao, Zhengbao

Abstract

In this study, the time-varying state formation control problem for general linear multi-agent systems (MASs) subject to mode-switching denial-of-service (MSDoS) attacks is considered. Based on only the sampled state information of itself and neighboring agents at event-triggered instants, a novel fully distributed event-triggered secure control strategy without continuous communication between agents is delicately designed. Note that the control strategy is implemented in a fully distributed manner, which means that it does not require any global network information. By using the multiple Lyapunov function approach based on edge-dependent average dwell time, this study presents the MASs subject to MSDoS attacks with limited attack frequency and attack width can achieve the specified time-varying state formation structure under the designed control strategy. Furthermore, this study presents that in any finite time, the control strategy does not exhibit Zeno behavior. Finally, the effectiveness and performance of the designed control strategy are validated by a numerical simulation.

Suggested Citation

  • Li, Weihua & Zhang, Huaguang & Wang, Wei & Cao, Zhengbao, 2022. "Fully distributed event-triggered time-varying formation control of multi-agent systems subject to mode-switching denial-of-service attacks," Applied Mathematics and Computation, Elsevier, vol. 414(C).
  • Handle: RePEc:eee:apmaco:v:414:y:2022:i:c:s0096300321007293
    DOI: 10.1016/j.amc.2021.126645
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321007293
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126645?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Juan & Zhang, Huaguang & Li, Weihua & Li, Keqin, 2021. "Distributed edge-event triggered consensus control for multi-agent systems by edge-based asynchronous communications," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    2. Henri Weimerskirch & Julien Martin & Yannick Clerquin & Peggy Alexandre & Sarka Jiraskova, 2001. "Energy saving in flight formation," Nature, Nature, vol. 413(6857), pages 697-698, October.
    3. Cai, Yuliang & Dai, Jing & Zhang, Huaguang & Wang, Yingchun, 2021. "Fixed-time leader-following/containment consensus of nonlinear multi-agent systems based on event-triggered mechanism," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    4. Zhang, Juan & Dai, Jing & Zhang, Huaguang & Sun, Shaoxin, 2021. "Cooperative output regulation of heterogeneous linear multi-agent systems based on the event-triggered distributed control under switching topologies," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    5. Yang, Haijiao & Ye, Dan, 2020. "Time-varying formation tracking control for high-order nonlinear multi-agent systems in fixed-time framework," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi, Yiwen & Qu, Ziyu & Yao, Zhaohui & Zhao, Xiujuan & Tang, Yiwen, 2023. "Event-Triggered iterative learning control for asynchronously switched systems," Applied Mathematics and Computation, Elsevier, vol. 440(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Hejun & Gao, Fangzheng & Huang, Jiacai & Wu, Yuqiang, 2021. "Global prescribed-time stabilization via time-scale transformation for switched nonlinear systems subject to switching rational powers," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    2. Trenchard, Hugh, 2013. "Peloton phase oscillations," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 194-201.
    3. Michael Griesser & Qi Ma & Simone Webber & Katharine Bowgen & David J T Sumpter, 2011. "Understanding Animal Group-Size Distributions," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-9, August.
    4. Zhu, Zhibin & Wang, Fuyong & Yin, Yanhui & Liu, Zhongxin & Chen, Zengqiang, 2022. "Distributed fault-tolerant containment control for a class of non-linear multi-agent systems via event-triggered mechanism," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    5. Wang, Boyu & Zhang, Yijun & Wei, Miao, 2023. "Fixed-time leader-following consensus of multi-agent systems with intermittent control," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    6. Miao, Suoxia & Su, Housheng, 2024. "Behaviors of matrix-weighted networks with antagonistic interactions," Applied Mathematics and Computation, Elsevier, vol. 467(C).
    7. Liu, Xinxiao & Wang, Lijie & Liu, Yang, 2023. "Fixed-time nonlinear-filter-based consensus control for nonlinear multiagent systems," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    8. Xu, Jiahong & Wang, Lijie & Liu, Yang & Sun, Jize & Pan, Yingnan, 2022. "Finite-time adaptive optimal consensus control for multi-agent systems subject to time-varying output constraints," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    9. Chang, Beibei & Zhu, Chuanxi, 2022. "Edge-based dynamic event-triggered mean square consensus control for stochastic multi-agent systems under weight-balanced digraph," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    10. Trenchard, Hugh & Ratamero, Erick & Richardson, Ashlin & Perc, Matjaž, 2015. "A deceleration model for bicycle peloton dynamics and group sorting," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 24-34.
    11. Luo, Peng & Wu, Defeng & Yamashita, Andre S. & Feng, Na & Yang, Yang, 2024. "Observer-based fixed-time dynamic surface tracking control for autonomous surface vehicles under actuator constraints and denial-of-service attacks," Applied Mathematics and Computation, Elsevier, vol. 465(C).
    12. Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1205-1230.
    13. Sheng, Li & Zhang, Sen & Gao, Ming, 2021. "Intermittent fault detection for linear discrete-time stochastic multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    14. Xu, Ziqiang & Li, Yun & Zhan, Xisheng & Yan, Huaicheng & Han, Yiyan, 2024. "Time-varying formation of uncertain nonlinear multi-agent systems via adaptive feedback control approach with event-triggered impulsive estimator," Applied Mathematics and Computation, Elsevier, vol. 475(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:414:y:2022:i:c:s0096300321007293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.