IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v471y2024ics0096300324000663.html
   My bibliography  Save this article

Nonlinear estimator-based funnel tracking control for a class of perturbed Euler-Lagrange systems

Author

Listed:
  • Jin, Xiaozheng
  • Tong, Xingcheng
  • Chi, Jing
  • Wu, Xiaoming
  • Wang, Hai

Abstract

In this article, a nonlinear estimator-based funnel perturbation rejection control method is investigated to manage the trajectory tracking problem of a class of perturbed Euler-Lagrange (EL) systems. To reinforce the perturbation rejection ability, perturbation estimators with nonlinear dynamics are established by employing a filtering operation, which can result in asymptotic convergence of estimation errors. Besides, by devising funnel variables with an exponential decaying function, a funnel control strategy is constructed to ensure tracking errors restricting into a prescribed region under the influence of persistent perturbations. Moreover, the tracking errors of the Euler-Lagrange system are concluded to be asymptotic stability with prescribed performance via Lyapunov stability theory. Finally, simulations validate the effectiveness of the developed control technology.

Suggested Citation

  • Jin, Xiaozheng & Tong, Xingcheng & Chi, Jing & Wu, Xiaoming & Wang, Hai, 2024. "Nonlinear estimator-based funnel tracking control for a class of perturbed Euler-Lagrange systems," Applied Mathematics and Computation, Elsevier, vol. 471(C).
  • Handle: RePEc:eee:apmaco:v:471:y:2024:i:c:s0096300324000663
    DOI: 10.1016/j.amc.2024.128594
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324000663
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128594?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Baoxing & Han, Tao & Xiao, Bo & Zhan, Xi-Sheng & Yan, Huaicheng, 2022. "Leader-following bipartite consensus of multiple uncertain Euler-Lagrange systems under deception attacks," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    2. Chan, Joseph Chang Lun & Tan, Chee Pin & Trinh, Hieu & Kamal, Md Abdus Samad & Chiew, Yeong Shiong, 2019. "Robust fault reconstruction for a class of non-infinitely observable descriptor systems using two sliding mode observers in cascade," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 78-92.
    3. Fan, Yanyan & Jin, Zhenlin & Luo, Xiaoyuan & Guo, Baosu, 2022. "Robust finite-time consensus control for Euler–Lagrange multi-agent systems subject to switching topologies and uncertainties," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    4. Guo, Xinchen & Wei, Guoliang, 2023. "Distributed sliding mode consensus control for multiple discrete-Time Euler-Lagrange systems," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Fanglai & Du, Wenqing, 2024. "Observer-based consensus of multi-agent systems under odd distributed impulsive control protocol," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    2. Yi, Jiale, 2023. "Adaptive fuzzy connectivity-preserving consensus protocols for stochastic strict-feedback nonlinear MASs subject to unmeasured periodic disturbances," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    3. Sun, Yuchen & Ma, Shuping, 2021. "Output regulation of switched singular systems based on extended state observer approach," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    4. Lun Chan, Joseph Chang & Lee, Tae H., 2022. "Observer-based fault-tolerant control for non-infinitely observable descriptor systems with unknown time-varying state and input delays," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    5. Peng, Runlong & Guo, Rongwei & Zheng, Bin & Miao, Zhonghua & Zhou, Jin, 2024. "Neural network-based robust consensus tracking for uncertain networked Euler-Lagrange systems with time-varying delays and output constraints," Applied Mathematics and Computation, Elsevier, vol. 468(C).
    6. Nguyen, Cuong M. & Tan, Chee Pin & Trinh, Hieu, 2021. "State and delay reconstruction for nonlinear systems with input delays," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    7. Guo, Xinchen & Wei, Guoliang, 2023. "Distributed sliding mode consensus control for multiple discrete-Time Euler-Lagrange systems," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    8. Han, Jian & Liu, Xiuhua & Wei, Xinjiang & Zhang, Huifeng & Hu, Xin, 2021. "Adjustable dimension descriptor observer based fault estimation of nonlinear system with unknown input," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    9. Che, Haochi & Huang, Jun & Zhao, Xudong & Ma, Xiang & Xu, Ning, 2020. "Functional interval observer for discrete-time systems with disturbances," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    10. Qing, Nengneng & Yang, Yongqing & Luan, Xiaoli & Wan, Haiying, 2024. "Practical time-boundary consensus for fractional-order multi-agent systems under well-known and estimable topology," Applied Mathematics and Computation, Elsevier, vol. 464(C).
    11. Xu, Ziqiang & Li, Yun & Zhan, Xisheng & Yan, Huaicheng & Han, Yiyan, 2024. "Time-varying formation of uncertain nonlinear multi-agent systems via adaptive feedback control approach with event-triggered impulsive estimator," Applied Mathematics and Computation, Elsevier, vol. 475(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:471:y:2024:i:c:s0096300324000663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.