IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v383y2020ics0096300320303167.html
   My bibliography  Save this article

Functional interval observer for discrete-time systems with disturbances

Author

Listed:
  • Che, Haochi
  • Huang, Jun
  • Zhao, Xudong
  • Ma, Xiang
  • Xu, Ning

Abstract

This paper further investigates the design problem of the functional interval observer for discrete-time systems with disturbances. Two methods are given to design functional interval observers. Given monotone system theory, a Luenberger-like functional interval observer is constructed and sufficient conditions are achieved by Sylvester equations in the first method. The second approach is known as the two-step method. An H∞ functional observer of the system is presented by the H∞ technique, and then the approach of the zonotope is used to estimate its upper and lower boundaries to improve the estimation accuracy. The above methods are applied to two examples for comparison and to show the correctness.

Suggested Citation

  • Che, Haochi & Huang, Jun & Zhao, Xudong & Ma, Xiang & Xu, Ning, 2020. "Functional interval observer for discrete-time systems with disturbances," Applied Mathematics and Computation, Elsevier, vol. 383(C).
  • Handle: RePEc:eee:apmaco:v:383:y:2020:i:c:s0096300320303167
    DOI: 10.1016/j.amc.2020.125352
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320303167
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125352?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chan, Joseph Chang Lun & Tan, Chee Pin & Trinh, Hieu & Kamal, Md Abdus Samad & Chiew, Yeong Shiong, 2019. "Robust fault reconstruction for a class of non-infinitely observable descriptor systems using two sliding mode observers in cascade," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 78-92.
    2. Zhou, Jianping & Park, Ju H. & Ma, Qian, 2016. "Non-fragile observer-based H∞ control for stochastic time-delay systems," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 69-83.
    3. M. C. Nguyen & H. Trinh & P. T. Nam, 2016. "Linear functional observers with guaranteed ε-convergence for discrete time-delay systems with input/output disturbances," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(13), pages 3193-3205, October.
    4. Li, Rongchang & Zhang, Qingling, 2018. "Robust H∞ sliding mode observer design for a class of Takagi–Sugeno fuzzy descriptor systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 158-178.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Jiyang & Zhu, Shuqian & Zhang, Dawei, 2022. "A robust distributed secure interval observation approach for uncertain discrete-time positive systems under deception attacks," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    2. Huang, Jun & Yang, Lin & Trinh, Hieu, 2021. "Robust control for incremental quadratic constrained nonlinear time-delay systems subject to actuator saturation," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    3. Wang, Ziyun & Wang, Xianzhe & Wang, Yan, 2024. "Orthotope-search-expansion-based extended zonotopic Kalman filter design for a discrete-time linear parameter-varying system with a dual-noise term," Applied Mathematics and Computation, Elsevier, vol. 474(C).
    4. Zhang, Tu & Li, Liwei & Shen, Mouquan, 2021. "Interval observer-based finite-time control for linear parameter-varying systems," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    5. Hoang Vu Dao & Manh Hung Nguyen & Kyoung Kwan Ahn, 2023. "Nonlinear Functional Observer Design for Robot Manipulators," Mathematics, MDPI, vol. 11(19), pages 1-16, September.
    6. Li, Xin & Wei, Guoliang & Ding, Derui, 2021. "Distributed resilient interval estimation for sensor networks under aperiodic denial-of-service attacks and adaptive event-triggered protocols," Applied Mathematics and Computation, Elsevier, vol. 409(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lun Chan, Joseph Chang & Lee, Tae H., 2022. "Observer-based fault-tolerant control for non-infinitely observable descriptor systems with unknown time-varying state and input delays," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    2. Liu, Yu-An & Tang, Shengdao & Liu, Yufan & Kong, Qingkai & Wang, Jing, 2021. "Extended dissipative sliding mode control for nonlinear networked control systems via event-triggered mechanism with random uncertain measurement," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    3. Obaid Alshammari & Mourad Kchaou & Houssem Jerbi & Sondess Ben Aoun & Víctor Leiva, 2022. "A Fuzzy Design for a Sliding Mode Observer-Based Control Scheme of Takagi-Sugeno Markov Jump Systems under Imperfect Premise Matching with Bio-Economic and Industrial Applications," Mathematics, MDPI, vol. 10(18), pages 1-28, September.
    4. Zhang, Jiancheng & Chadli, Mohammed & Wang, Yan, 2019. "A fixed-time observer for discrete-time singular systems with unknown inputs," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    5. Sakthivel, R. & Joby, Maya & Wang, Chao & Kaviarasan, B., 2018. "Finite-time fault-tolerant control of neutral systems against actuator saturation and nonlinear actuator faults," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 425-436.
    6. Luo, Jinnan & Tian, Wenhong & Zhong, Shouming & Shi, Kaibo & Chen, Hao & Gu, Xian-Ming & Wang, Wenqin, 2017. "Non-fragile asynchronous H∞ control for uncertain stochastic memory systems with Bernoulli distribution," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 109-128.
    7. Zhiguo Yan & Zhiwei Zhang & Guolin Hu & Baolong Zhu, 2022. "Observer-Based Finite-Time H ∞ Control of the Blood Gases System in Extracorporeal Circulation via the T-S Fuzzy Model," Mathematics, MDPI, vol. 10(12), pages 1-15, June.
    8. Vimal Kumar, S. & Raja, R. & Marshal Anthoni, S. & Cao, Jinde & Tu, Zhengwen, 2018. "Robust finite-time non-fragile sampled-data control for T-S fuzzy flexible spacecraft model with stochastic actuator faults," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 483-497.
    9. Sun, Yuchen & Ma, Shuping, 2021. "Output regulation of switched singular systems based on extended state observer approach," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    10. Zhou, Yu & Pan, Yingnan & Li, Shubo & Liang, Hongjing, 2020. "Event-triggered cooperative containment control for a class of uncertain non-identical networks," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    11. Zhou, Jianping & Sang, Chengyan & Li, Xiao & Fang, Muyun & Wang, Zhen, 2018. "H∞ consensus for nonlinear stochastic multi-agent systems with time delay," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 41-58.
    12. Nguyen, Cuong M. & Pathirana, Pubudu N. & Trinh, Hieu, 2019. "Robust observer and observer-based control designs for discrete one-sided Lipschitz systems subject to uncertainties and disturbances," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 42-53.
    13. Harshavarthini, S. & Sakthivel, R. & Ma, Yong-Ki & Muslim, M., 2020. "Finite-time resilient fault-tolerant investment policy scheme for chaotic nonlinear finance system," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    14. Wu, Kai-Ning & Sun, Han-Xiao & Yang, Baoqing & Lim, Cheng-Chew, 2018. "Finite-time boundary control for delay reaction–diffusion systems," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 52-63.
    15. Chan, Joseph Chang Lun & Tan, Chee Pin & Trinh, Hieu & Kamal, Md Abdus Samad & Chiew, Yeong Shiong, 2019. "Robust fault reconstruction for a class of non-infinitely observable descriptor systems using two sliding mode observers in cascade," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 78-92.
    16. de Oliveira, Fúlvia S.S. & Souza, Fernando O., 2020. "Further refinements in stability conditions for time-varying delay systems," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    17. Xiong, Jun & Chang, Xiao-Heng & Yi, Xiaojian, 2018. "Design of robust nonfragile fault detection filter for uncertain dynamic systems with quantization," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 774-788.
    18. Yu, Peng & Ma, Yuechao, 2020. "Observer-based asynchronous control for Markov jump systems," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    19. Nguyen, Cuong M. & Tan, Chee Pin & Trinh, Hieu, 2021. "State and delay reconstruction for nonlinear systems with input delays," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    20. Kaviarasan, Boomipalagan & Kwon, Oh-Min & Park, Myeong Jin & Sakthivel, Rathinasamy, 2021. "Stochastic faulty estimator-based non-fragile tracking controller for multi-agent systems with communication delay," Applied Mathematics and Computation, Elsevier, vol. 392(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:383:y:2020:i:c:s0096300320303167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.