Output regulation of switched singular systems based on extended state observer approach
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2021.126020
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xing, Mengping & Xia, Jianwei & Wang, Jing & Meng, Bo & Shen, Hao, 2019. "Asynchronous H∞ filtering for nonlinear persistent dwell-time switched singular systems with measurement quantization," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
- Chan, Joseph Chang Lun & Tan, Chee Pin & Trinh, Hieu & Kamal, Md Abdus Samad & Chiew, Yeong Shiong, 2019. "Robust fault reconstruction for a class of non-infinitely observable descriptor systems using two sliding mode observers in cascade," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 78-92.
- Huo, Xin & Ma, Li & Zhao, Xudong & Zong, Guangdeng, 2020. "Event-triggered adaptive fuzzy output feedback control of MIMO switched nonlinear systems with average dwell time," Applied Mathematics and Computation, Elsevier, vol. 365(C).
- Mehran Hosseini-Pishrobat & Jafar Keighobadi & Atta Oveisi & Tamara Nestorović, 2018. "Robust Linear Output Regulation Using Extended State Observer," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-12, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lun Chan, Joseph Chang & Lee, Tae H., 2022. "Observer-based fault-tolerant control for non-infinitely observable descriptor systems with unknown time-varying state and input delays," Applied Mathematics and Computation, Elsevier, vol. 430(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Guo, Yaxiao & Li, Junmin & Duan, Ruirui, 2021. "Extended dissipativity-based control for persistent dwell-time switched singularly perturbed systems and its application to electronic circuits," Applied Mathematics and Computation, Elsevier, vol. 402(C).
- Zhang, Qiliang & Feng, Jun-e & Wang, Biao & Wang, Peihe, 2020. "Event-triggered mechanism of designing set stabilization state feedback controller for switched Boolean networks," Applied Mathematics and Computation, Elsevier, vol. 383(C).
- Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
- Yao, Hejun & Gao, Fangzheng & Huang, Jiacai & Wu, Yuqiang, 2021. "Global prescribed-time stabilization via time-scale transformation for switched nonlinear systems subject to switching rational powers," Applied Mathematics and Computation, Elsevier, vol. 393(C).
- Kwon, W. & Jin, Yongsik & Lee, S.M., 2020. "PI-type event-triggered H∞ filter for networked T-S fuzzy systems using affine matched membership function approach," Applied Mathematics and Computation, Elsevier, vol. 385(C).
- Cai, Xiao & Zhong, Shouming & Wang, Jun & Shi, Kaibo, 2020. "Robust H∞ control for uncertain delayed T-S fuzzy systems with stochastic packet dropouts," Applied Mathematics and Computation, Elsevier, vol. 385(C).
- Yang, Wei & Cui, Guozeng & Ma, Qian & Ma, Jiali & Tao, Chongben, 2022. "Finite-time adaptive event-triggered command filtered backstepping control for a QUAV," Applied Mathematics and Computation, Elsevier, vol. 423(C).
- Tavakol Aghaei, Vahid & Ağababaoğlu, Arda & Bawo, Biram & Naseradinmousavi, Peiman & Yıldırım, Sinan & Yeşilyurt, Serhat & Onat, Ahmet, 2023. "Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm," Applied Energy, Elsevier, vol. 341(C).
- Tan, Lihua & Li, Chuandong & Huang, Junjian & Huang, Tingwen, 2021. "Output feedback leader-following consensus for nonlinear stochastic multiagent systems: The event-triggered method," Applied Mathematics and Computation, Elsevier, vol. 395(C).
- Lun Chan, Joseph Chang & Lee, Tae H., 2022. "Observer-based fault-tolerant control for non-infinitely observable descriptor systems with unknown time-varying state and input delays," Applied Mathematics and Computation, Elsevier, vol. 430(C).
- Han, Yunrui & Zhao, Ying & Wang, Peng, 2021. "Finite-time rate anti-bump switching control for switched systems," Applied Mathematics and Computation, Elsevier, vol. 401(C).
- Wang, Yudong & Xia, Jianwei & Wang, Zhen & Shen, Hao, 2020. "Design of a fault-tolerant output-feedback controller for thickness control in cold rolling mills," Applied Mathematics and Computation, Elsevier, vol. 369(C).
- Cui, Jiahao & Wang, Ruihua & Jiao, Ticao & Fei, Shumin, 2021. "A foreseeable Lyapunov function approach for H∞ asynchronous filtering of discrete-time switched systems," Applied Mathematics and Computation, Elsevier, vol. 395(C).
- Xia, Yude & Wang, Jing & Meng, Bo & Chen, Xiangyong, 2020. "Further results on fuzzy sampled-data stabilization of chaotic nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 379(C).
- Yang, Chengyu & Li, Fei & Kong, Qingkai & Chen, Xiangyong & Wang, Jian, 2021. "Asynchronous fault-tolerant control for stochastic jumping singularly perturbed systems: An H∞ sliding mode control scheme," Applied Mathematics and Computation, Elsevier, vol. 389(C).
- Han, Jian & Liu, Xiuhua & Wei, Xinjiang & Zhang, Huifeng & Hu, Xin, 2021. "Adjustable dimension descriptor observer based fault estimation of nonlinear system with unknown input," Applied Mathematics and Computation, Elsevier, vol. 396(C).
- Chen, Wenbin & Lu, Junwei & Zhuang, Guangming & Gao, Fang & Zhang, Zhengqiang & Xu, Shengyuan, 2022. "Further results on stabilization for neutral singular Markovian jump systems with mixed interval time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 420(C).
- Zhou, Yusheng & Chen, Danhong, 2021. "Optimized state-dependent switching law design for a class of switched nonlinear systems with two unstable subsystems," Applied Mathematics and Computation, Elsevier, vol. 397(C).
- Guo, Xiyue & Liang, Hongjing & Pan, Yingnan, 2020. "Observer-Based Adaptive Fuzzy Tracking Control for Stochastic Nonlinear Multi-Agent Systems with Dead-Zone Input," Applied Mathematics and Computation, Elsevier, vol. 379(C).
- Wang, Xiaomin & Li, Feng & Hu, Xingliu & Wang, Jing, 2023. "Mixed H∞/passive synchronization for persistent dwell-time switched neural networks via an activation function dividing method," Applied Mathematics and Computation, Elsevier, vol. 442(C).
More about this item
Keywords
Switched singular system; Output regulation; Observer-based control; Full-order and reduced-order observer;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:399:y:2021:i:c:s0096300321000680. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.