IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v466y2024ics0096300323006434.html
   My bibliography  Save this article

Observer-based consensus of multi-agent systems under odd distributed impulsive control protocol

Author

Listed:
  • Zhu, Fanglai
  • Du, Wenqing

Abstract

In this paper, for leader-follower Lipschitz nonlinear multi-agent systems (MASs) affected by external disturbances, observer-based distributed controller design problems are discussed in order to realize the MASs consensus. Firstly, to deal with unmeasured system states and the unknown disturbances, for each follower, a joint unknown input observer is proposed. To do so, through an interval observer, a mathematical relationship between the state and the disturbance is set up in advance. Secondarily, by using the estimations of the state and the disturbance, a local feedback controller is designed aiming at stabilizing the linear part of each follower. Thirdly, an odd distributed impulsive control method is proposed which is utilized to deal with the nonlinearity. Then the MASs consensus goal is realized by combining the local feedback controller and the distributed impulsive controller. At last, a simulation is discussed so as to display the effectivity of the raised scheme.

Suggested Citation

  • Zhu, Fanglai & Du, Wenqing, 2024. "Observer-based consensus of multi-agent systems under odd distributed impulsive control protocol," Applied Mathematics and Computation, Elsevier, vol. 466(C).
  • Handle: RePEc:eee:apmaco:v:466:y:2024:i:c:s0096300323006434
    DOI: 10.1016/j.amc.2023.128474
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323006434
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.128474?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sader, Malika & Chen, Zengqiang & Liu, Zhongxin & Deng, Chao, 2021. "Distributed robust fault-tolerant consensus control for a class of nonlinear multi-agent systems with intermittent communications," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    2. Chang, Beibei & Mu, Xiaowu & Yang, Zhe & Fang, Jianyin, 2021. "Event-based secure consensus of muti-agent systems under asynchronous DoS attacks," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    3. Yang, Jian & Fečkan, Michal & Wang, JinRong, 2021. "Consensus Problems of Linear Multi-agent Systems involving Conformable Derivative," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    4. Fan, Yanyan & Jin, Zhenlin & Luo, Xiaoyuan & Guo, Baosu, 2022. "Robust finite-time consensus control for Euler–Lagrange multi-agent systems subject to switching topologies and uncertainties," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    5. Guo, Xiyue & Liang, Hongjing & Pan, Yingnan, 2020. "Observer-Based Adaptive Fuzzy Tracking Control for Stochastic Nonlinear Multi-Agent Systems with Dead-Zone Input," Applied Mathematics and Computation, Elsevier, vol. 379(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi, Jiale, 2023. "Adaptive fuzzy connectivity-preserving consensus protocols for stochastic strict-feedback nonlinear MASs subject to unmeasured periodic disturbances," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    2. Wang, Boyu & Zhang, Yijun & Wei, Miao, 2023. "Fixed-time leader-following consensus of multi-agent systems with intermittent control," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    3. Zhao, Guangtong & Cao, Liang & Li, Xiaomeng & Zhou, Qi, 2022. "Observer-based dynamic event-triggered control for nonstrict-feedback stochastic nonlinear multiagent systems," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    4. Li, Weixun & Du, Xiangyang & Xiao, Jingyu & Zhang, Limin, 2023. "Bipartite hybrid formation tracking control for heterogeneous multi-agent systems in multi-group cooperative-competitive networks," Applied Mathematics and Computation, Elsevier, vol. 456(C).
    5. Peng, Yanru & Xu, Shengyuan, 2023. "Adaptive tracking control for a class of stochastic nonlinear systems with full-state constraints and dead-zone," Applied Mathematics and Computation, Elsevier, vol. 452(C).
    6. Li, Xin & Wei, Guoliang & Ding, Derui, 2021. "Distributed resilient interval estimation for sensor networks under aperiodic denial-of-service attacks and adaptive event-triggered protocols," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    7. Ye, Hu & Cheng, Peng & Zhang, Xiang & He, Shuping & Zhang, Weidong, 2023. "Event-triggered-based H∞ control for Markov jump cyber-physical systems against denial-of-service attacks," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    8. Zhu, Zhibin & Wang, Fuyong & Yin, Yanhui & Liu, Zhongxin & Chen, Zengqiang, 2022. "Distributed fault-tolerant containment control for a class of non-linear multi-agent systems via event-triggered mechanism," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    9. Ma, Yong-Sheng & Che, Wei-Wei & Deng, Chao, 2022. "Observer-Based fuzzy containment control for nonlinear networked mass under dos attacks," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    10. Guo, Junfeng & Wang, Fei & Xue, Qianwen & Wang, Mengqing, 2023. "Cluster synchronization control for coupled genetic oscillator networks under denial-of-service attacks: Pinning partial impulsive strategy," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    11. Chang, Beibei & Zhu, Chuanxi, 2022. "Edge-based dynamic event-triggered mean square consensus control for stochastic multi-agent systems under weight-balanced digraph," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    12. Zhuang, Jiawei & Peng, Shiguo & Wang, Yonghua, 2022. "Exponential consensus of stochastic discrete multi-agent systems under DoS attacks via periodically intermittent control: An impulsive framework," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    13. Qing, Nengneng & Yang, Yongqing & Luan, Xiaoli & Wan, Haiying, 2024. "Practical time-boundary consensus for fractional-order multi-agent systems under well-known and estimable topology," Applied Mathematics and Computation, Elsevier, vol. 464(C).
    14. Zhu, Jun-Wei & Zhou, Qiao-Qian & Wu, Li-Bing & Xu, Jian-Ming & Wang, Xin, 2021. "Topology reconstruction based fault identification for uncertain multi-agent systems with application to multi-axis motion control system," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    15. Oliveira, Pedro M. & Palma, Jonathan M. & Lacerda, Márcio J., 2022. "H2 state-feedback control for discrete-time cyber-physical uncertain systems under DoS attacks," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    16. Chen, Qi-Xin & Chang, Xiao-Heng, 2022. "Resilient filter of nonlinear network systems with dynamic event-triggered mechanism and hybrid cyber attack," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    17. Zhang, Meijie & Yang, Xinsong & Xiang, Zhengrong & Liu, Xiaoyang, 2023. "Consensus of nonlinear MAS via double nonidentical mode-dependent event-triggered switching control," Applied Mathematics and Computation, Elsevier, vol. 453(C).
    18. Jin, Xiaozheng & Tong, Xingcheng & Chi, Jing & Wu, Xiaoming & Wang, Hai, 2024. "Nonlinear estimator-based funnel tracking control for a class of perturbed Euler-Lagrange systems," Applied Mathematics and Computation, Elsevier, vol. 471(C).
    19. Ma, Yan & Zhang, Zhenzhen & Yang, Li & Chen, Hao & Zhang, Yihao, 2022. "A resilient optimized dynamic event-triggered mechanism on networked control system with switching behavior under mixed attacks," Applied Mathematics and Computation, Elsevier, vol. 430(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:466:y:2024:i:c:s0096300323006434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.