IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v415y2022ics0096300321007773.html
   My bibliography  Save this article

Disturbance observer-based backstepping formation control of multiple quadrotors with asymmetric output error constraints

Author

Listed:
  • Wang, Fang
  • Gao, Yali
  • Zhou, Chao
  • Zong, Qun

Abstract

This paper presents a distributed formation tracking control strategy which acts on multiple quadrotor unmanned aerial vehicles (QUAVs) formation control under external disturbance and asymmetric output error constraints. An asymmetric barrier Lyapunov function (BLF) is applied to ensure the constraint of output error. Based on graph theory and backstepping control method, a distributed formation controller is designed to achieve the formation and maintenance of formations, where external disturbance is handled by disturbance observer (DO). In the framework of Lyapunov theory, the bounded stability of the closed-loop system is proved, and the output error is remained within the constraint range. The superiority and effectiveness of the designed control strategy is verified by the compared simulation.

Suggested Citation

  • Wang, Fang & Gao, Yali & Zhou, Chao & Zong, Qun, 2022. "Disturbance observer-based backstepping formation control of multiple quadrotors with asymmetric output error constraints," Applied Mathematics and Computation, Elsevier, vol. 415(C).
  • Handle: RePEc:eee:apmaco:v:415:y:2022:i:c:s0096300321007773
    DOI: 10.1016/j.amc.2021.126693
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321007773
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126693?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Du, Haibo & Yu, Bo & Wei, Jiajia & Zhang, Jun & Wu, Di & Tao, Weiqing, 2020. "Attitude trajectory planning and attitude control for quad-rotor aircraft based on finite-time control technique," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    2. Liu, Wei & Ma, Qian & Zhuang, Guangming & Lu, Junwei & Chu, Yuming, 2019. "An improved adaptive neural dynamic surface control for pure-feedback systems with full state constraints and disturbance," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 37-50.
    3. Wang, Jinhuan & Xu, Yuling & Xu, Yong & Yang, Dedong, 2019. "Time-varying formation for high-order multi-agent systems with external disturbances by event-triggered integral sliding mode control," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 333-343.
    4. Zhang, Yanhui & Liang, Hongjing & Ma, Hui & Zhou, Qi & Yu, Zhandong, 2018. "Distributed adaptive consensus tracking control for nonlinear multi-agent systems with state constraints," Applied Mathematics and Computation, Elsevier, vol. 326(C), pages 16-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fengxi Xie & Guozhen Liang & Ying-Ren Chien, 2024. "Robust Leader–Follower Formation Control Using Neural Adaptive Prescribed Performance Strategies," Mathematics, MDPI, vol. 12(20), pages 1-21, October.
    2. Ma, Haoxiang & Xiong, Shixun & Fu, Zhumu & Tao, Fazhan & Ji, Baofeng, 2024. "High-order disturbance observer-based safe tracking control for a class of uncertain MIMO nonlinear systems with time-varying full state constraints," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    3. Xiongfeng Deng & Yiqing Huang & Lisheng Wei, 2022. "Adaptive Fuzzy Command Filtered Finite-Time Tracking Control for Uncertain Nonlinear Multi-Agent Systems with Unknown Input Saturation and Unknown Control Directions," Mathematics, MDPI, vol. 10(24), pages 1-22, December.
    4. Miao, Suoxia & Su, Housheng, 2024. "Behaviors of matrix-weighted networks with antagonistic interactions," Applied Mathematics and Computation, Elsevier, vol. 467(C).
    5. Wang, Le & Sun, Wei & Su, Shun-Feng, 2022. "Adaptive asymptotic tracking control for nonlinear systems with state constraints and input saturation," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    6. Cui, Guozeng & Xu, Hui & Yu, Jinpeng & Ma, Jiali & Li, Ze, 2023. "Fixed-time distributed adaptive attitude control for multiple QUAVs with quantized input," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    7. Xu, Lin-Xing & Wang, Yu-Long & Wang, Fei & Long, Yue, 2023. "Event-triggered active disturbance rejection trajectory tracking control for a quadrotor unmanned aerial vehicle," Applied Mathematics and Computation, Elsevier, vol. 449(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue, Xiaohui & Shao, Xingling & Li, Jie, 2021. "Prescribed chattering reduction control for quadrotors using aperiodic signal updating," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    2. Xin, Li-Ping & Yu, Bo & Zhao, Lin & Yu, Jinpeng, 2020. "Adaptive fuzzy backstepping control for a two continuous stirred tank reactors process based on dynamic surface control approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    3. Wu, Jing & Sun, Wei & Su, Shun-Feng & Xia, Jianwei, 2022. "Neural-based adaptive control for nonlinear systems with quantized input and the output constraint," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    4. Cai, Yuliang & Zhang, Huaguang & Liu, Yang & He, Qiang, 2020. "Distributed bipartite finite-time event-triggered output consensus for heterogeneous linear multi-agent systems under directed signed communication topology," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    5. Zhang, Weijian & Du, Haibo & Chu, Zhaobi, 2022. "Robust discrete-time non-smooth consensus protocol for multi-agent systems via super-twisting algorithm," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    6. Kaviarasan, Boomipalagan & Kwon, Oh-Min & Park, Myeong Jin & Sakthivel, Rathinasamy, 2021. "Stochastic faulty estimator-based non-fragile tracking controller for multi-agent systems with communication delay," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    7. Wang, Di & Liu, Can & Ding, Dawei & Gao, Suixiang & Chu, Ming, 2022. "Finite-time optimal tracking control using augmented error system method," Applied Mathematics and Computation, Elsevier, vol. 424(C).
    8. Yang, Wenjing & Xia, Jianwei & Yu, Miao & Zhang, Na, 2023. "Decentralized Adaptive Funnel Control of Uncertain Large-Scale Interconnected Nonlinear System," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    9. Cui, Lili & Zhang, Yong & Wang, Xiaowei & Xie, Xiangpeng, 2021. "Event-triggered distributed self-learning robust tracking control for uncertain nonlinear interconnected systems," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    10. Khalid A. Alattas & Mai The Vu & Omid Mofid & Fayez F. M. El-Sousy & Afef Fekih & Saleh Mobayen, 2022. "Barrier Function-Based Nonsingular Finite-Time Tracker for Quadrotor UAVs Subject to Uncertainties and Input Constraints," Mathematics, MDPI, vol. 10(10), pages 1-16, May.
    11. Liu, Wei & Fei, Shiqi & Ma, Qian & Zhao, Huanyu & Xu, Shengyuan, 2022. "Prescribed performance dynamic surface control for nonlinear systems subject to partial and full state constraints," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    12. Xiao, Wenbin & Cao, Liang & Dong, Guowei & Zhou, Qi, 2019. "Adaptive fuzzy control for pure-feedback systems with full state constraints and unknown nonlinear dead zone," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 354-371.
    13. Liu, Lu & Ding, Shihong, 2021. "A unified control approach to finite-time stabilization of SOSM dynamics subject to an output constraint," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    14. Cai, Yuliang & Dai, Jing & Zhang, Huaguang & Wang, Yingchun, 2021. "Fixed-time leader-following/containment consensus of nonlinear multi-agent systems based on event-triggered mechanism," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    15. Wang, Wei & Huang, Chi & Huang, Chuangxia & Cao, Jinde & Lu, Jianquan & Wang, Li, 2020. "Bipartite formation problem of second-order nonlinear multi-agent systems with hybrid impulses," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    16. Fu, Yingying & Li, Jing & Li, Xiaobo & Wu, Shuiyan, 2023. "Dynamic event-triggered adaptive control for uncertain stochastic nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    17. Feng, Hongyan & Xu, Huiling & Xu, Shengyuan & Chen, Weimin, 2019. "Model reference tracking control for spatially interconnected discrete-time systems with interconnected chains," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 50-62.
    18. Basheer, Ambreen & Rehan, Muhammad & Tufail, Muhammad & Razaq, Muhammad Ahsan, 2021. "A novel approach for adaptive H∞ leader-following consensus of higher-order locally Lipschitz multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    19. Zhang, Qiliang & Feng, Jun-e & Wang, Biao & Wang, Peihe, 2020. "Event-triggered mechanism of designing set stabilization state feedback controller for switched Boolean networks," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    20. Shao, Xingling & Yue, Xiaohui & Li, Jie, 2021. "Event-triggered robust control for quadrotors with preassigned time performance constraints," Applied Mathematics and Computation, Elsevier, vol. 392(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:415:y:2022:i:c:s0096300321007773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.