IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v448y2023ics0096300323001169.html
   My bibliography  Save this article

Asynchronous sliding mode control of continuous-time singular markov jump systems with time-varying delay under event-triggered strategy

Author

Listed:
  • Liang, Tiantian
  • Shi, Shengli
  • Ma, Yuechao

Abstract

This paper is mainly to design an asynchronous sliding mode controller for singular Markov jump systems (SMJSs) under event-triggered strategy (ETS). A sampling-based ETS is introduced, which can not only save resources but also avoid Zeno behavior. Hidden Markov model (HMM) is used to describe the phenomenon that the system mode is not synchronized with the controller mode. A novel delay-dependent sliding mode surface is constructed. Then, an asynchronous sliding mode control (SMC) law is obtained by utilizing the ETS, which guarantees the reachability of the closed-loop system. A stochastic admissibility with H∞ performance criterion is established for SMJSs by linear matrix inequality. Finally, effectiveness of the theoretical approach is demonstrated through two examples.

Suggested Citation

  • Liang, Tiantian & Shi, Shengli & Ma, Yuechao, 2023. "Asynchronous sliding mode control of continuous-time singular markov jump systems with time-varying delay under event-triggered strategy," Applied Mathematics and Computation, Elsevier, vol. 448(C).
  • Handle: RePEc:eee:apmaco:v:448:y:2023:i:c:s0096300323001169
    DOI: 10.1016/j.amc.2023.127947
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323001169
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.127947?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Ziwei & Chen, Zongjie & Sheng, Zhang & Li, Dan & Wang, Jing, 2022. "Static output feedback secure synchronization control for Markov jump neural networks under hybrid cyber-attacks," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    2. Sun, Lin & Su, Lei & Wang, Jing, 2021. "Non-fragile dissipative state estimation for semi-Markov jump inertial neural networks with reaction-diffusion," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    3. Luenberger, David G & Arbel, Ami, 1977. "Singular Dynamic Leontief Systems," Econometrica, Econometric Society, vol. 45(4), pages 991-995, May.
    4. Jiang, Baoping & Gao, Cunchen & Xie, Jing, 2015. "Passivity based sliding mode control of uncertain singular Markovian jump systems with time-varying delay and nonlinear perturbations," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 187-200.
    5. Mao, Xuerong, 1999. "Stability of stochastic differential equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 79(1), pages 45-67, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yun & Fang, Tian & Kong, Qingkai & Li, Feng, 2024. "Zero-sum game-based optimal control for discrete-time Markov jump systems: A parallel off-policy Q-learning method," Applied Mathematics and Computation, Elsevier, vol. 467(C).
    2. Li, Xin & Mu, Xiaowu, 2024. "Dynamic event-triggered fuzzy control for nonlinear singular semi-Markovian jump systems via state decomposition approach," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    3. Zhang, Jianyu & Wang, Yingying & Yang, Songwei & Li, Jiaojiao & Qu, Hao, 2024. "A design of fuzzy sliding mode control for Markovian jumping system with different input matrices," Applied Mathematics and Computation, Elsevier, vol. 463(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Qi & Yao, Deyin & Wang, Jiahui & Wu, Chengwei, 2016. "Robust control of uncertain semi-Markovian jump systems using sliding mode control method," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 72-87.
    2. Mei, Yu & Wang, Guanqi & Shen, Hao, 2023. "Adaptive Event-Triggered L2−L∞ Control of Semi-Markov Jump Distributed Parameter Systems," Applied Mathematics and Computation, Elsevier, vol. 439(C).
    3. E. K. Boukas, 2004. "Nonfragile Controller Design for Linear Markovian Jumping Parameters Systems," Journal of Optimization Theory and Applications, Springer, vol. 122(2), pages 241-255, August.
    4. Li, Yuyuan & Lu, Jianqiu & Kou, Chunhai & Mao, Xuerong & Pan, Jiafeng, 2018. "Robust discrete-state-feedback stabilization of hybrid stochastic systems with time-varying delay based on Razumikhin technique," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 152-161.
    5. Obaid Alshammari & Mourad Kchaou & Houssem Jerbi & Sondess Ben Aoun & Víctor Leiva, 2022. "A Fuzzy Design for a Sliding Mode Observer-Based Control Scheme of Takagi-Sugeno Markov Jump Systems under Imperfect Premise Matching with Bio-Economic and Industrial Applications," Mathematics, MDPI, vol. 10(18), pages 1-28, September.
    6. Song, Gongfei & Zhang, Zimeng & Zhu, Yanan & Li, Tao, 2022. "Discrete-time control for highly nonlinear neutral stochastic delay systems," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    7. Mao, Xuerong & Shen, Yi & Yuan, Chenggui, 2008. "Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 118(8), pages 1385-1406, August.
    8. Rathinasamy, Anandaraman & Nair, Priya, 2018. "Asymptotic mean-square stability of weak second-order balanced stochastic Runge–Kutta methods for multi-dimensional Itô stochastic differential systems," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 276-303.
    9. Fu, Xiuwen & Sheng, Zhaoliang & Lin, Chong & Chen, Bing, 2022. "New results on admissibility and dissipativity analysis of descriptor time-delay systems," Applied Mathematics and Computation, Elsevier, vol. 419(C).
    10. Xi, Fubao, 2004. "Stability of a random diffusion with nonlinear drift," Statistics & Probability Letters, Elsevier, vol. 68(3), pages 273-286, July.
    11. Li, Bing, 2017. "A note on stability of hybrid stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 299(C), pages 45-57.
    12. Zhang, Hai & Chen, Xinbin & Ye, Renyu & Stamova, Ivanka & Cao, Jinde, 2023. "Adaptive quasi-synchronization analysis for Caputo delayed Cohen–Grossberg neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 49-65.
    13. Guo, Beibei & Xiao, Yu, 2024. "Synchronization of multi-link and multi-delayed inertial neural networks with Markov jump via aperiodically intermittent adaptive control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 435-453.
    14. Dobos, Imre, 2007. "Egy megjegyzés Bródy András: Leontief zárt dinamikus modellje című dolgozathoz [A note on András Bródys study entitled Leontiefs closed dynamic model"]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(11), pages 1004-1011.
    15. Ruan, Dehao & Xu, Liping & Luo, Jiaowan, 2019. "Stability of hybrid stochastic functional differential equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 832-841.
    16. Zhou, Jianping & Sang, Chengyan & Li, Xiao & Fang, Muyun & Wang, Zhen, 2018. "H∞ consensus for nonlinear stochastic multi-agent systems with time delay," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 41-58.
    17. Yuan, Chenggui & Mao, Xuerong, 2004. "Convergence of the Euler–Maruyama method for stochastic differential equations with Markovian switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(2), pages 223-235.
    18. Wu, C. C. & Chang, N. B., 2003. "Grey input-output analysis and its application for environmental cost allocation," European Journal of Operational Research, Elsevier, vol. 145(1), pages 175-201, February.
    19. Xu, Jiang & Chen, Tao & Wen, Xiangdan, 2021. "Analysis of a Bailey–Dietz model for vector-borne disease under regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    20. Ye, Zhiyong & Zhang, He & Zhang, Hongyu & Zhang, Hua & Lu, Guichen, 2015. "Mean square stabilization and mean square exponential stabilization of stochastic BAM neural networks with Markovian jumping parameters," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 156-165.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:448:y:2023:i:c:s0096300323001169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.