Modeling handicapped pedestrians considering physical characteristics using cellular automaton
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2018.06.090
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jin, Cheng-Jie & Jiang, Rui & Yin, Jun-Lin & Dong, Li-Yun & Li, Dawei, 2017. "Simulating bi-directional pedestrian flow in a cellular automaton model considering the body-turning behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 666-681.
- Guo, Ren-Yong, 2014. "New insights into discretization effects in cellular automata models for pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 1-11.
- Blue, Victor J. & Adler, Jeffrey L., 2001. "Cellular automata microsimulation for modeling bi-directional pedestrian walkways," Transportation Research Part B: Methodological, Elsevier, vol. 35(3), pages 293-312, March.
- Zheng, Ying & Jia, Bin & Li, Xin-Gang & Zhu, Nuo, 2011. "Evacuation dynamics with fire spreading based on cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3147-3156.
- Yamamoto, Kazuhiro & Kokubo, Satoshi & Nishinari, Katsuhiro, 2007. "Simulation for pedestrian dynamics by real-coded cellular automata (RCA)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 654-660.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fu, Libi & Liu, Yuxing & Shi, Yongqian & Zhao, Yongxiang, 2021. "Dynamics of bidirectional pedestrian flow in a corridor including individuals with disabilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
- Tamang, Nutthavuth & Sun, Yi, 2023. "Application of the dynamic Monte Carlo method to pedestrian evacuation dynamics," Applied Mathematics and Computation, Elsevier, vol. 445(C).
- Kurdi, Heba & Almulifi, Asma & Al-Megren, Shiroq & Youcef-Toumi, Kamal, 2021. "A balanced evacuation algorithm for facilities with multiple exits," European Journal of Operational Research, Elsevier, vol. 289(1), pages 285-296.
- Chen, Kai & Song, Xiao & Ren, Xiaoxiang, 2021. "Modeling social interaction and intention for pedestrian trajectory prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
- Chaoyu Zheng & Benhong Peng & Xin Sheng & Anxia Wan, 2021. "Haze risk: information diffusion based on cellular automata," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2605-2623, July.
- Yu, Rongfu & Mao, Qinghua & Lv, Jian, 2022. "An extended model for crowd evacuation considering rescue behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Jun & Fu, Siyao & He, Haibo & Jia, Hongfei & Li, Yanzhong & Guo, Yi, 2015. "Simulating large-scale pedestrian movement using CA and event driven model: Methodology and case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 304-321.
- Zheng, Xiaoping & Li, Wei & Guan, Chao, 2010. "Simulation of evacuation processes in a square with a partition wall using a cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2177-2188.
- Zhao, Ruifeng & Zhai, Yue & Qu, Lu & Wang, Ruhao & Huang, Yaoying & Dong, Qi, 2021. "A continuous floor field cellular automata model with interaction area for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 575(C).
- Yunqiang Xue & Meng Zhong & Luowei Xue & Bing Zhang & Haokai Tu & Caifeng Tan & Qifang Kong & Hongzhi Guan, 2022. "Simulation Analysis of Bus Passenger Boarding and Alighting Behavior Based on Cellular Automata," Sustainability, MDPI, vol. 14(4), pages 1-16, February.
- Li, Shuang & Yu, Xiaohui & Zhang, Yanjuan & Zhai, Changhai, 2018. "A numerical simulation strategy on occupant evacuation behaviors and casualty prediction in a building during earthquakes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1238-1250.
- Fu, Zhijian & Zhou, Xiaodong & Zhu, Kongjin & Chen, Yanqiu & Zhuang, Yifan & Hu, Yuqi & Yang, Lizhong & Chen, Changkun & Li, Jian, 2015. "A floor field cellular automaton for crowd evacuation considering different walking abilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 294-303.
- Feliciani, Claudio & Nishinari, Katsuhiro, 2016. "An improved Cellular Automata model to simulate the behavior of high density crowd and validation by experimental data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 135-148.
- Yue, Hao & Guan, Hongzhi & Zhang, Juan & Shao, Chunfu, 2010. "Study on bi-direction pedestrian flow using cellular automata simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 527-539.
- Zheng, Linjiang & Peng, Xiaoli & Wang, Linglin & Sun, Dihua, 2019. "Simulation of pedestrian evacuation considering emergency spread and pedestrian panic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 167-181.
- Huang, Keke & Zheng, Xiaoping & Cheng, Yuan & Yang, Yeqing, 2017. "Behavior-based cellular automaton model for pedestrian dynamics," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 417-424.
- Chen, Yanyan & Chen, Ning & Wang, Yang & Wang, Zhenbao & Feng, Guochen, 2015. "Modeling pedestrian behaviors under attracting incidents using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 287-300.
- Ken Hidaka & Toshiyuki Yamamoto, 2021. "Activity Scheduling Behavior of the Visitors to an Outdoor Recreational Facility Using GPS Data," Sustainability, MDPI, vol. 13(9), pages 1-22, April.
- Tang, Tie-Qiao & Shao, Yi-Xiao & Chen, Liang, 2017. "Modeling pedestrian movement at the hall of high-speed railway station during the check-in process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 157-166.
- Li, Lin & Yu, Zhonghai & Chen, Yang, 2014. "Evacuation dynamic and exit optimization of a supermarket based on particle swarm optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 157-172.
- Abdelghany, Ahmed & Abdelghany, Khaled & Mahmassani, Hani, 2016. "A hybrid simulation-assignment modeling framework for crowd dynamics in large-scale pedestrian facilities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 159-176.
- Yamamoto, Hiroki & Yanagisawa, Daichi & Feliciani, Claudio & Nishinari, Katsuhiro, 2019. "Body-rotation behavior of pedestrians for collision avoidance in passing and cross flow," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 486-510.
- Zhou, Zi-Xuan & Nakanishi, Wataru & Asakura, Yasuo, 2021. "Route choice in the pedestrian evacuation: Microscopic formulation based on visual information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
- Moonsoo Ko & Taewan Kim & Keemin Sohn, 2013. "Calibrating a social-force-based pedestrian walking model based on maximum likelihood estimation," Transportation, Springer, vol. 40(1), pages 91-107, January.
- Hao, Qing-Yi & Qian, Jia-Li & Wu, Chao-Yun & Guo, Ning, 2021. "Phase behaviors of counterflowing stream of pedestrians with site-exchange in local vision and environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
- Guan, Junbiao & Wang, Kaihua & Chen, Fangyue, 2016. "A cellular automaton model for evacuation flow using game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 655-661.
More about this item
Keywords
Cellular automaton; Pedestrian modeling; Pedestrian handicapped; Agent-based modeling; Pedestrian flow;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:510:y:2018:i:c:p:507-517. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.