IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v389y2010i1p179-186.html
   My bibliography  Save this article

Personalized recommendation via integrated diffusion on user–item–tag tripartite graphs

Author

Listed:
  • Zhang, Zi-Ke
  • Zhou, Tao
  • Zhang, Yi-Cheng

Abstract

Personalized recommender systems are confronting great challenges of accuracy, diversification and novelty, especially when the data set is sparse and lacks accessorial information, such as user profiles, item attributes and explicit ratings. Collaborative tags contain rich information about personalized preferences and item contents, and are therefore potential to help in providing better recommendations. In this article, we propose a recommendation algorithm based on an integrated diffusion on user–item–tag tripartite graphs. We use three benchmark data sets, Del.icio.us, MovieLens and BibSonomy, to evaluate our algorithm. Experimental results demonstrate that the usage of tag information can significantly improve accuracy, diversification and novelty of recommendations.

Suggested Citation

  • Zhang, Zi-Ke & Zhou, Tao & Zhang, Yi-Cheng, 2010. "Personalized recommendation via integrated diffusion on user–item–tag tripartite graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 179-186.
  • Handle: RePEc:eee:phsmap:v:389:y:2010:i:1:p:179-186
    DOI: 10.1016/j.physa.2009.08.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437109006839
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2009.08.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geng, Bingrui & Li, Lingling & Jiao, Licheng & Gong, Maoguo & Cai, Qing & Wu, Yue, 2015. "NNIA-RS: A multi-objective optimization based recommender system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 383-397.
    2. Zhang, Yin & Zhang, Bin & Gao, Kening & Guo, Pengwei & Sun, Daming, 2012. "Combining content and relation analysis for recommendation in social tagging systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5759-5768.
    3. Zhang, Jing & Peng, Qinke & Sun, Shiquan & Liu, Che, 2014. "Collaborative filtering recommendation algorithm based on user preference derived from item domain features," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 66-76.
    4. Li, Jianguo & Tang, Yong & Chen, Jiemin, 2017. "Leveraging tagging and rating for recommendation: RMF meets weighted diffusion on tripartite graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 398-411.
    5. Yeh, Duen-Yian & Cheng, Ching-Hsue, 2015. "Recommendation system for popular tourist attractions in Taiwan using Delphi panel and repertory grid techniques," Tourism Management, Elsevier, vol. 46(C), pages 164-176.
    6. Shams, Bita & Haratizadeh, Saman, 2016. "SibRank: Signed bipartite network analysis for neighbor-based collaborative ranking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 364-377.
    7. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    8. Wang, Jun & Zhang, Qian-Ming & Zhou, Tao, 2019. "Tag-aware link prediction algorithm in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 105-111.
    9. Zhou, Bin & He, Zhe & Wang, Nianxin & Xi, Zhendong & Li, Yujian & Wang, Bing-Hong, 2015. "On the optimization of multitasking process with multiplayer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 41-45.
    10. Zhang, Shujuan & Jin, Zhen & Zhang, Juan, 2016. "The dynamical modeling and simulation analysis of the recommendation on the user–movie network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 310-319.
    11. An, Ya-Hui & Dong, Qiang & Sun, Chong-Jing & Nie, Da-Cheng & Fu, Yan, 2016. "Diffusion-like recommendation with enhanced similarity of objects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 708-715.
    12. Wen, Yuan & Liu, Yun & Zhang, Zhen-Jiang & Xiong, Fei & Cao, Wei, 2014. "Compare two community-based personalized information recommendation algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 199-209.
    13. Zhang, Chu-Xu & Zhang, Zi-Ke & Yu, Lu & Liu, Chuang & Liu, Hao & Yan, Xiao-Yong, 2014. "Information filtering via collaborative user clustering modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 195-203.
    14. Zhang, Zi-Ke & Yu, Lu & Fang, Kuan & You, Zhi-Qiang & Liu, Chuang & Liu, Hao & Yan, Xiao-Yong, 2014. "Website-oriented recommendation based on heat spreading and tag-aware collaborative filtering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 82-88.
    15. Ramezani, Mohsen & Yaghmaee, Farzin, 2016. "A novel video recommendation system based on efficient retrieval of human actions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 607-623.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:389:y:2010:i:1:p:179-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.