IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v409y2021ics0096300321004690.html
   My bibliography  Save this article

Nash equilibrium and group strategy consensus of networked evolutionary game with coupled social groups

Author

Listed:
  • Guo, Peilian
  • Han, Changda

Abstract

This paper studies the existence of Nash equilibrium and group strategy consensus problem of networked evolutionary game with coupled social groups, which is formulated as a two-layer networked game. First, by the approach of semi-tensor product, the payoff functions of players are converted into the algebraic forms, and two necessary and sufficient conditions are derived for the existence of pure Nash equilibrium. Second, the strict game algebraic equation by the best response adjustment rule with group intelligence is established, by which the group strategy consensus problem is investigated. At last, an example is worked out to verify our conclusions.

Suggested Citation

  • Guo, Peilian & Han, Changda, 2021. "Nash equilibrium and group strategy consensus of networked evolutionary game with coupled social groups," Applied Mathematics and Computation, Elsevier, vol. 409(C).
  • Handle: RePEc:eee:apmaco:v:409:y:2021:i:c:s0096300321004690
    DOI: 10.1016/j.amc.2021.126380
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321004690
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126380?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhong, Jie & Liu, Yang & Kou, Kit Ian & Sun, Liangjie & Cao, Jinde, 2019. "On the ensemble controllability of Boolean control networks using STP method," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 51-62.
    2. Haitao Li & Xueying Ding & Qiqi Yang & Yingrui Zhou, 2018. "Algebraic Formulation and Nash Equilibrium of Competitive Diffusion Games," Dynamic Games and Applications, Springer, vol. 8(2), pages 423-433, June.
    3. Lingzhi Luo & Nilanjan Chakraborty & Katia Sycara, 2011. "An evolutionary game-theoretic model for ethno-religious conflicts between two groups," Computational and Mathematical Organization Theory, Springer, vol. 17(4), pages 379-401, November.
    4. Luo, Chao & Wang, Xingyuan & Zheng, Yuanjie, 2018. "Co-evolution of cooperation and limited resources on interdependent networks," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 174-185.
    5. Wang, Liqing & Liu, Yang & Wu, Zhengguang & Alsaadi, Fuad E., 2018. "Strategy optimization for static games based on STP method," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 390-399.
    6. Christoph Hauert & Michael Doebeli, 2004. "Spatial structure often inhibits the evolution of cooperation in the snowdrift game," Nature, Nature, vol. 428(6983), pages 643-646, April.
    7. Fu, Shihua & Cheng, Daizhan & Feng, Jun-e & Zhao, Jianli, 2021. "Matrix expression of finite Boolean-type algebras," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    8. Ding, Xueying & Li, Haitao & Yang, Qiqi & Zhou, Yingrui & Alsaedi, Ahmed & Alsaadi, Fuad E., 2017. "Stochastic stability and stabilization of n-person random evolutionary Boolean games," Applied Mathematics and Computation, Elsevier, vol. 306(C), pages 1-12.
    9. Hisashi Ohtsuki & Christoph Hauert & Erez Lieberman & Martin A. Nowak, 2006. "A simple rule for the evolution of cooperation on graphs and social networks," Nature, Nature, vol. 441(7092), pages 502-505, May.
    10. Guodong Zhao & Haitao Li & Weiwei Sun & Fuad E. Alsaadi, 2018. "Modelling and strategy consensus for a class of networked evolutionary games," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(12), pages 2548-2557, September.
    11. Li, Haitao & Xu, Xiaojing & Ding, Xueying, 2019. "Finite-time stability analysis of stochastic switched boolean networks with impulsive effect," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 557-565.
    12. Liu, Chen & Guo, Hao & Li, Zhibin & Gao, Xiaoyuan & Li, Shudong, 2019. "Coevolution of multi-game resolves social dilemma in network population," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 402-407.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Aixin & Li, Haitao & Wang, Lin, 2024. "Exploring multi-potential games in strategic form: A graph theoretic approach," Applied Mathematics and Computation, Elsevier, vol. 474(C).
    2. Wang, Chaoqian & Lin, Zongzhe & Rothman, Dale S., 2022. "Public goods game on coevolving networks driven by the similarity and difference of payoff," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    3. Xiang, Liu, 2022. "A large-scale equilibrium model of energy emergency production: Embedding social choice rules into Nash Q-learning automatically achieving consensus of urgent recovery behaviors," Energy, Elsevier, vol. 259(C).
    4. Zhiru Wang & Shihua Fu & Jianjun Wang & Xiaoyu Zhao, 2024. "Strategy Consensus of Networked Evolutionary Games with Time Invariant Delays," Dynamic Games and Applications, Springer, vol. 14(4), pages 981-996, September.
    5. Zhang, Xi & Zhu, Qingyuan & Li, Xingchen & Pan, Yinghao, 2023. "The impact of government subsidy on photovoltaic enterprises independent innovation based on the evolutionary game theory," Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinrong Yang & Zhenping Geng & Haitao Li, 2023. "Matrix-Based Method for the Analysis and Control of Networked Evolutionary Games: A Survey," Games, MDPI, vol. 14(2), pages 1-13, February.
    2. Li, Yalu & Li, Haitao & Li, Yuanyuan, 2021. "Constrained set controllability of logical control networks with state constraints and its applications," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    3. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    4. Zhao, Zhengwu & Zhang, Chunyan, 2023. "The mechanisms of labor division from the perspective of task urgency and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    5. Han, Jia-Xu & Wang, Rui-Wu, 2023. "Complex interactions promote the frequency of cooperation in snowdrift game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    6. Qiguang An & Hongfeng Guo & Yating Zheng, 2022. "On Robust Stability and Stabilization of Networked Evolutionary Games with Time Delays," Mathematics, MDPI, vol. 10(15), pages 1-12, July.
    7. Sabin Lessard, 2011. "Effective Game Matrix and Inclusive Payoff in Group-Structured Populations," Dynamic Games and Applications, Springer, vol. 1(2), pages 301-318, June.
    8. Li, Xiaopeng & Sun, Shiwen & Xia, Chengyi, 2019. "Reputation-based adaptive adjustment of link weight among individuals promotes the cooperation in spatial social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 810-820.
    9. Lefeng Cheng & Pan Peng & Wentian Lu & Pengrong Huang & Yang Chen, 2024. "Study of Flexibility Transformation in Thermal Power Enterprises under Multi-Factor Drivers: Application of Complex-Network Evolutionary Game Theory," Mathematics, MDPI, vol. 12(16), pages 1-23, August.
    10. Zhu, Sanmei & Feng, Jun-e, 2021. "The set stabilization problem for Markovian jump Boolean control networks: An average optimal control approach," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    11. Fabio Della Rossa & Fabio Dercole & Anna Di Meglio, 2020. "Direct Reciprocity and Model-Predictive Strategy Update Explain the Network Reciprocity Observed in Socioeconomic Networks," Games, MDPI, vol. 11(1), pages 1-28, March.
    12. Sarkar, Bijan, 2021. "The cooperation–defection evolution on social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    13. Liu, Yansheng & Song, Mengjin & Li, Haitao & Li, Yalu & Hou, Wenying, 2021. "Containment problem of finite-field networks with fixed and switching topology," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    14. Li, Bin-Quan & Wu, Zhi-Xi & Guan, Jian-Yue, 2022. "Critical thresholds of benefit distribution in an extended snowdrift game model," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    15. Sakiyama, Tomoko, 2021. "A power law network in an evolutionary hawk–dove game," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    16. Qi Su & Lei Zhou & Long Wang, 2019. "Evolutionary multiplayer games on graphs with edge diversity," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-22, April.
    17. Yu, Jianyong & Jiang, J.C. & Xiang, Leijun, 2017. "Group-based strategy diffusion in multiplex networks with weighted values," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 148-156.
    18. Flávio L Pinheiro & Jorge M Pacheco & Francisco C Santos, 2012. "From Local to Global Dilemmas in Social Networks," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-6, February.
    19. Cheng, Jiangjiang & Mei, Wenjun & Su, Wei & Chen, Ge, 2023. "Evolutionary games on networks: Phase transition, quasi-equilibrium, and mathematical principles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    20. Yunming Xiao & Bin Wu, 2019. "Close spatial arrangement of mutants favors and disfavors fixation," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:409:y:2021:i:c:s0096300321004690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.