IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v157y2022ics0960077922001588.html
   My bibliography  Save this article

Critical thresholds of benefit distribution in an extended snowdrift game model

Author

Listed:
  • Li, Bin-Quan
  • Wu, Zhi-Xi
  • Guan, Jian-Yue

Abstract

Social inequality takes many forms, but its most basic form is that individuals give the least and get the most in return. In this paper, we introduce an extended model based on the snowdrift game model, involving the concept of inequality (unequal distribution of benefit). We calculated the critical threshold for the benefits distribution under the dominant cooperative strategy through numerical simulation and theoretical analysis. We illustrate the similarities and differences in the evolution of cooperation with and without incentives and punishments. Both theoretical and simulation results show that within the limited resource range, the larger the resource is, the larger the critical proportion of benefits that defectors can exploit, whether in unstructured or structured population. We also show that the inequality is stronger in social structures with sparse connections and weaker in those with dense connections. Moreover, we revealed that introducing incentives and punishments makes it harder for cooperators to get a fair share of the profits.

Suggested Citation

  • Li, Bin-Quan & Wu, Zhi-Xi & Guan, Jian-Yue, 2022. "Critical thresholds of benefit distribution in an extended snowdrift game model," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:chsofr:v:157:y:2022:i:c:s0960077922001588
    DOI: 10.1016/j.chaos.2022.111948
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922001588
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.111948?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benjamin Allen & Gabor Lippner & Yu-Ting Chen & Babak Fotouhi & Naghmeh Momeni & Shing-Tung Yau & Martin A. Nowak, 2017. "Evolutionary dynamics on any population structure," Nature, Nature, vol. 544(7649), pages 227-230, April.
    2. Mao, Yajun & Rong, Zhihai & Wu, Zhi-Xi, 2021. "Effect of collective influence on the evolution of cooperation in evolutionary prisoner’s dilemma games," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    3. Erez Lieberman & Christoph Hauert & Martin A. Nowak, 2005. "Evolutionary dynamics on graphs," Nature, Nature, vol. 433(7023), pages 312-316, January.
    4. Hisashi Ohtsuki & Christoph Hauert & Erez Lieberman & Martin A. Nowak, 2006. "A simple rule for the evolution of cooperation on graphs and social networks," Nature, Nature, vol. 441(7092), pages 502-505, May.
    5. Martin A. Nowak & Akira Sasaki & Christine Taylor & Drew Fudenberg, 2004. "Emergence of cooperation and evolutionary stability in finite populations," Nature, Nature, vol. 428(6983), pages 646-650, April.
    6. Zhang, Yanling & Chen, Xiaojie & Liu, Aizhi & Sun, Changyin, 2018. "The effect of the stake size on the evolution of fairness," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 641-653.
    7. Oliver P. Hauser & Christian Hilbe & Krishnendu Chatterjee & Martin A. Nowak, 2019. "Social dilemmas among unequals," Nature, Nature, vol. 572(7770), pages 524-527, August.
    8. Mobilia, Mauro, 2013. "Evolutionary games with facilitators: When does selection favor cooperation?," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 113-123.
    9. Aming Li & Lei Zhou & Qi Su & Sean P. Cornelius & Yang-Yu Liu & Long Wang & Simon A. Levin, 2020. "Evolution of cooperation on temporal networks," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    10. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    11. Christoph Hauert & Michael Doebeli, 2004. "Spatial structure often inhibits the evolution of cooperation in the snowdrift game," Nature, Nature, vol. 428(6983), pages 643-646, April.
    12. Ohad Lewin-Epstein & Ranit Aharonov & Lilach Hadany, 2017. "Microbes can help explain the evolution of host altruism," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    13. Qi Su & Lei Zhou & Long Wang, 2019. "Evolutionary multiplayer games on graphs with edge diversity," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-22, April.
    14. Yang, Han-Xin & Chen, Xiaojie, 2018. "Promoting cooperation by punishing minority," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 460-466.
    15. Christina Riehl & Meghan J. Strong, 2019. "Social parasitism as an alternative reproductive tactic in a cooperatively breeding cuckoo," Nature, Nature, vol. 567(7746), pages 96-99, March.
    16. Christian Hilbe & Štěpán Šimsa & Krishnendu Chatterjee & Martin A. Nowak, 2018. "Evolution of cooperation in stochastic games," Nature, Nature, vol. 559(7713), pages 246-249, July.
    17. Alam, Muntasir & Nagashima, Keisuke & Tanimoto, Jun, 2018. "Various error settings bring different noise-driven effects on network reciprocity in spatial prisoner's dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 338-346.
    18. Wang, Qiang & He, Nanrong & Chen, Xiaojie, 2018. "Replicator dynamics for public goods game with resource allocation in large populations," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 162-170.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Bin-Quan & Wu, Zhi-Xi & Guan, Jian-Yue, 2022. "Alternating rotation of coordinated and anti-coordinated action due to environmental feedback and noise," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Jiangjiang & Mei, Wenjun & Su, Wei & Chen, Ge, 2023. "Evolutionary games on networks: Phase transition, quasi-equilibrium, and mathematical principles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    2. Li, Xiaopeng & Hao, Gang & Zhang, Zhipeng & Xia, Chengyi, 2021. "Evolution of cooperation in heterogeneously stochastic interactions," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Yao Meng & Sean P. Cornelius & Yang-Yu Liu & Aming Li, 2024. "Dynamics of collective cooperation under personalised strategy updates," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Chen, Qiao & Chen, Tong & Wang, Yongjie, 2019. "Cleverly handling the donation information can promote cooperation in public goods game," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 363-373.
    5. Sarkar, Bijan, 2021. "The cooperation–defection evolution on social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    6. Michael Foley & Rory Smead & Patrick Forber & Christoph Riedl, 2021. "Avoiding the bullies: The resilience of cooperation among unequals," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-18, April.
    7. Benjamin Allen & Christine Sample & Robert Jencks & James Withers & Patricia Steinhagen & Lori Brizuela & Joshua Kolodny & Darren Parke & Gabor Lippner & Yulia A Dementieva, 2020. "Transient amplifiers of selection and reducers of fixation for death-Birth updating on graphs," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-20, January.
    8. Liu, Xuesong & Pan, Qiuhui & He, Mingfeng & Liu, Aizhi, 2019. "Promotion of cooperation in evolutionary game dynamics under asymmetric information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 258-266.
    9. Wang, Mengyao & Pan, Qiuhui & He, Mingfeng, 2020. "Individuals with the firm heart are conducive to cooperation in social dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    10. McAvoy, Alex & Fraiman, Nicolas & Hauert, Christoph & Wakeley, John & Nowak, Martin A., 2018. "Public goods games in populations with fluctuating size," Theoretical Population Biology, Elsevier, vol. 121(C), pages 72-84.
    11. Fabio Della Rossa & Fabio Dercole & Anna Di Meglio, 2020. "Direct Reciprocity and Model-Predictive Strategy Update Explain the Network Reciprocity Observed in Socioeconomic Networks," Games, MDPI, vol. 11(1), pages 1-28, March.
    12. Qi Su & Lei Zhou & Long Wang, 2019. "Evolutionary multiplayer games on graphs with edge diversity," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-22, April.
    13. Wang, Chaoqian & Szolnoki, Attila, 2023. "Inertia in spatial public goods games under weak selection," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    14. Ohdaira, Tetsushi, 2024. "The universal probabilistic reward based on the difference of payoff realizes the evolution of cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    15. Flávio L Pinheiro & Jorge M Pacheco & Francisco C Santos, 2012. "From Local to Global Dilemmas in Social Networks," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-6, February.
    16. Wang, Chaoqian & Lin, Zongzhe & Rothman, Dale S., 2022. "Public goods game on coevolving networks driven by the similarity and difference of payoff," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    17. Dhaker Kroumi, 2021. "Aspiration Can Promote Cooperation in Well-Mixed Populations As in Regular Graphs," Dynamic Games and Applications, Springer, vol. 11(2), pages 390-417, June.
    18. Liu, Danna & Huang, Changwei & Dai, Qionglin & Li, Haihong, 2019. "Positive correlation between strategy persistence and teaching ability promotes cooperation in evolutionary Prisoner’s Dilemma games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 267-274.
    19. Swami Iyer & Timothy Killingback, 2020. "Evolution of Cooperation in Social Dilemmas with Assortative Interactions," Games, MDPI, vol. 11(4), pages 1-31, September.
    20. Ma, Xiaojian & Quan, Ji & Wang, Xianjia, 2023. "Evolution of cooperation with nonlinear environment feedback in repeated public goods game," Applied Mathematics and Computation, Elsevier, vol. 452(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:157:y:2022:i:c:s0960077922001588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.