IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v259y2022ics036054422201920x.html
   My bibliography  Save this article

A large-scale equilibrium model of energy emergency production: Embedding social choice rules into Nash Q-learning automatically achieving consensus of urgent recovery behaviors

Author

Listed:
  • Xiang, Liu

Abstract

A large-scale energy emergency production plan driven by extreme events in energy supply chain networks is the low-probability/high-consequence event that is difficult to prepare. One of the most prominent challenges is efficiently computing the equilibrium point characterized with more frequently involved in common resource conflicts due to different player behaviors in energy supply chain networks. In this paper, a novel large-scale equilibrium model of energy emergency production: embedding social choice rules into Nash Q-learning automatically achieving consensus of urgent recovery behaviors, is proposed to tackle this challenge. The main contributions of this work are that firstly set up a large-scale equilibrium model of energy emergency production to formulate energy emergency production plans by modifying the large-scale energy equilibrium model, and the computational limitations of Generalized Nash Equilibrium are overcame by combination of Nash Q-learning methods and individuals’ preferences reaching a collective decision which guarantees uniqueness of the large-scale Nash equilibrium to achieve both system-level efficiency and maximum fairness. Simulations results show that the generalized Nash bargaining solution can be implemented by the proposed large-scale equilibrium model of energy emergency production, in which outcome of the game is the emergency production stable equilibria alternative with no chance moves in a given consensus level, and compared with the existing techniques considering non-cooperative behaviors, it has a significantly lower minimisation of time for the energy restoration by twenty-nine percent, and reduces minimisation of cost for the energy restoration by seventeen percent and minimisation of carbon dioxide emissions by twenty-three percent with disaster recovery.

Suggested Citation

  • Xiang, Liu, 2022. "A large-scale equilibrium model of energy emergency production: Embedding social choice rules into Nash Q-learning automatically achieving consensus of urgent recovery behaviors," Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:energy:v:259:y:2022:i:c:s036054422201920x
    DOI: 10.1016/j.energy.2022.125023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422201920X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Peilian & Han, Changda, 2021. "Nash equilibrium and group strategy consensus of networked evolutionary game with coupled social groups," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    2. Xiang, Liu, 2020. "Energy emergency supply chain collaboration optimization with group consensus through reinforcement learning considering non-cooperative behaviours," Energy, Elsevier, vol. 210(C).
    3. Howard, J. V., 1992. "A social choice rule and its implementation in perfect equilibrium," Journal of Economic Theory, Elsevier, vol. 56(1), pages 142-159, February.
    4. Wang, Yifei & Wang, Xiuli & Shao, Chengcheng & Gong, Naiwei, 2020. "Distributed energy trading for an integrated energy system and electric vehicle charging stations: A Nash bargaining game approach," Renewable Energy, Elsevier, vol. 155(C), pages 513-530.
    5. Penkovskii, Andrey & Stennikov, Valery & Mednikova, Ekaterina & Postnikov, Ivan, 2018. "Search for a market equilibrium of Cournot-Nash in the competitive heat market," Energy, Elsevier, vol. 161(C), pages 193-201.
    6. Emenike, Scholastica N. & Falcone, Gioia, 2020. "A review on energy supply chain resilience through optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Huppmann, Daniel & Egging, Ruud, 2014. "Market power, fuel substitution and infrastructure – A large-scale equilibrium model of global energy markets," Energy, Elsevier, vol. 75(C), pages 483-500.
    8. Le Cadre, Hélène & Jacquot, Paulin & Wan, Cheng & Alasseur, Clémence, 2020. "Peer-to-peer electricity market analysis: From variational to Generalized Nash Equilibrium," European Journal of Operational Research, Elsevier, vol. 282(2), pages 753-771.
    9. Kuznetsova, Elizaveta & Li, Yan-Fu & Ruiz, Carlos & Zio, Enrico & Ault, Graham & Bell, Keith, 2013. "Reinforcement learning for microgrid energy management," Energy, Elsevier, vol. 59(C), pages 133-146.
    10. Cai, Tianxing & Zhao, Chuanyu & Xu, Qiang, 2012. "Energy network dispatch optimization under emergency of local energy shortage," Energy, Elsevier, vol. 42(1), pages 132-145.
    11. Yang, Zhenbing & Hao, Chunyan & Shao, Shuai & Chen, Zhuo & Yang, Lili, 2022. "Appropriate technology and energy security: From the perspective of biased technological change," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    12. Tsimopoulos, Evangelos G. & Georgiadis, Michael C., 2021. "Nash equilibria in electricity pool markets with large-scale wind power integration," Energy, Elsevier, vol. 228(C).
    13. Xiang, Liu, 2017. "Energy network dispatch optimization under emergency of local energy shortage with web tool for automatic large group decision-making," Energy, Elsevier, vol. 120(C), pages 740-750.
    14. Klemeš, Jiří Jaromír & Fan, Yee Van & Jiang, Peng, 2020. "The energy and environmental footprints of COVID-19 fighting measures – PPE, disinfection, supply chains," Energy, Elsevier, vol. 211(C).
    15. Helgesen, Per Ivar & Tomasgard, Asgeir, 2018. "An equilibrium market power model for power markets and tradable green certificates, including Kirchhoff's Laws and Nash-Cournot competition," Energy Economics, Elsevier, vol. 70(C), pages 270-288.
    16. Amin, Sakib Bin & Chang, Youngho & Khan, Farhan & Taghizadeh-Hesary, Farhad, 2022. "Energy security and sustainable energy policy in Bangladesh: From the lens of 4As framework," Energy Policy, Elsevier, vol. 161(C).
    17. Karl E. Kurbel, 2013. "Enterprise Resource Planning and Supply Chain Management," Progress in IS, Springer, edition 127, number 978-3-642-31573-2, June.
    18. Zhou, Zhe & Moura, Scott J. & Zhang, Hongcai & Zhang, Xuan & Guo, Qinglai & Sun, Hongbin, 2021. "Power-traffic network equilibrium incorporating behavioral theory: A potential game perspective," Applied Energy, Elsevier, vol. 289(C).
    19. Dirk Helbing, 2013. "Globally networked risks and how to respond," Nature, Nature, vol. 497(7447), pages 51-59, May.
    20. Wei, Chun & Shen, Zhuzheng & Xiao, Dongliang & Wang, Licheng & Bai, Xiaoqing & Chen, Haoyong, 2021. "An optimal scheduling strategy for peer-to-peer trading in interconnected microgrids based on RO and Nash bargaining," Applied Energy, Elsevier, vol. 295(C).
    21. Tutak, Magdalena & Brodny, Jarosław, 2022. "Analysis of the level of energy security in the three seas initiative countries," Applied Energy, Elsevier, vol. 311(C).
    22. Samsatli, Sheila & Samsatli, Nouri J., 2019. "The role of renewable hydrogen and inter-seasonal storage in decarbonising heat – Comprehensive optimisation of future renewable energy value chains," Applied Energy, Elsevier, vol. 233, pages 854-893.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raj Kumar Bachar & Shaktipada Bhuniya & Santanu Kumar Ghosh & Biswajit Sarkar, 2022. "Controllable Energy Consumption in a Sustainable Smart Manufacturing Model Considering Superior Service, Flexible Demand, and Partial Outsourcing," Mathematics, MDPI, vol. 10(23), pages 1-29, November.
    2. Yuran Jin & Cheng Gao, 2023. "Hybrid Optimization of Green Supply Chain Network and Scheduling in Distributed 3D Printing Intelligent Factory," Sustainability, MDPI, vol. 15(7), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Chengzhu & Wu, Desheng & Gong, Nianjiao & Qi, Rui, 2020. "Multi-agent mixed complementary simulation of natural gas upstream market liberalization in China," Energy, Elsevier, vol. 200(C).
    2. Peng Jiang & Jiří Jaromír Klemeš & Yee Van Fan & Xiuju Fu & Yong Mong Bee, 2021. "More Is Not Enough: A Deeper Understanding of the COVID-19 Impacts on Healthcare, Energy and Environment Is Crucial," IJERPH, MDPI, vol. 18(2), pages 1-22, January.
    3. Xiang, Liu, 2020. "Energy emergency supply chain collaboration optimization with group consensus through reinforcement learning considering non-cooperative behaviours," Energy, Elsevier, vol. 210(C).
    4. Collen Zalengera & Maxon L. Chitawo & Isaac Chitedze & Long Seng To & Vincent Mwale & Kondwani T. Gondwe & Timeyo Maroyi, 2021. "Unbending the Winding Path of a Low-Income Country’s Energy Sector amid the COVID-19 Pandemic: Perspectives from Malawi," Energies, MDPI, vol. 14(21), pages 1-15, November.
    5. Seferlis, Panos & Varbanov, Petar Sabev & Papadopoulos, Athanasios I. & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2021. "Sustainable design, integration, and operation for energy high-performance process systems," Energy, Elsevier, vol. 224(C).
    6. Xia, Yuanxing & Xu, Qingshan & Chen, Lu & Du, Pengwei, 2022. "The flexible roles of distributed energy storages in peer-to-peer transactive energy market: A state-of-the-art review," Applied Energy, Elsevier, vol. 327(C).
    7. Wang, Xuejie & zhao, Huiru & Lu, Hao & Zhang, Yuanyuan & Wang, Yuwei & Wang, Jingbo, 2022. "Decentralized coordinated operation model of VPP and P2H systems based on stochastic-bargaining game considering multiple uncertainties and carbon cost," Applied Energy, Elsevier, vol. 312(C).
    8. Wang, Zhuo & Hou, Hui & Zhao, Bo & Zhang, Leiqi & Shi, Ying & Xie, Changjun, 2024. "Risk-averse stochastic capacity planning and P2P trading collaborative optimization for multi-energy microgrids considering carbon emission limitations: An asymmetric Nash bargaining approach," Applied Energy, Elsevier, vol. 357(C).
    9. Kumar, Sourabh, 2023. "Evaluation and analysis of India's energy security: A policy perspective," Energy, Elsevier, vol. 278(PB).
    10. Wang, Yubin & Zheng, Yanchong & Yang, Qiang, 2023. "Nash bargaining based collaborative energy management for regional integrated energy systems in uncertain electricity markets," Energy, Elsevier, vol. 269(C).
    11. Igor Linkov & Benjamin Trump & Greg Kiker, 2022. "Diversity and inclusiveness are necessary components of resilient international teams," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-5, December.
    12. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    13. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    14. Man Li & Tao Ye & Peijun Shi & Jian Fang, 2015. "Impacts of the global economic crisis and Tohoku earthquake on Sino–Japan trade: a comparative perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 541-556, January.
    15. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    16. Laura M. Canevari‐Luzardo & Frans Berkhout & Mark Pelling, 2020. "A relational view of climate adaptation in the private sector: How do value chain interactions shape business perceptions of climate risk and adaptive behaviours?," Business Strategy and the Environment, Wiley Blackwell, vol. 29(2), pages 432-444, February.
    17. Yang, Jie & Yu, Fan & Ma, Kai & Yang, Bo & Yue, Zhiyuan, 2024. "Optimal scheduling of electric-hydrogen integrated charging station for new energy vehicles," Renewable Energy, Elsevier, vol. 224(C).
    18. Lan, Puzhe & Han, Dong & Xu, Xiaoyuan & Yan, Zheng & Ren, Xijun & Xia, Shiwei, 2022. "Data-driven state estimation of integrated electric-gas energy system," Energy, Elsevier, vol. 252(C).
    19. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    20. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:259:y:2022:i:c:s036054422201920x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.