IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v406y2021ics0096300321003556.html
   My bibliography  Save this article

Event-triggered non-fragile control for uncertain positive Roesser model with PDT switching mechanism

Author

Listed:
  • Wang, Jinling
  • Liang, Jinling
  • Zhang, Cheng-Tang
  • Fan, Dongmei

Abstract

In this paper, the issue of non-fragile control is addressed for the positive discrete-time Roesser model with uncertain parameters, where the switching mechanism obeys the persistent dwell time (PDT) constraint. First of all, in order to reduce the resource occupancy, a event-triggered (E-T) mechanism is introduced for the considered positive Roesser model. Then two kinds of non-fragile controllers combining with the E-T scheme are designed. By utilizing the PDT idea and the co-positive-type Lyapunov function method, sufficient conditions to ensure that the resulting closed-loop systems are positive and robust exponentially stable are presented. In addition, explicit expressions for the related controller gain matrices are also provided. Finally, an illustrative simulation example is given to show feasibility of the developed theoretical results.

Suggested Citation

  • Wang, Jinling & Liang, Jinling & Zhang, Cheng-Tang & Fan, Dongmei, 2021. "Event-triggered non-fragile control for uncertain positive Roesser model with PDT switching mechanism," Applied Mathematics and Computation, Elsevier, vol. 406(C).
  • Handle: RePEc:eee:apmaco:v:406:y:2021:i:c:s0096300321003556
    DOI: 10.1016/j.amc.2021.126266
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321003556
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126266?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zuo, Zhiqiang & Xie, Pengfei & Wang, Yijing, 2020. "Output-based dynamic event-triggering control for sensor saturated systems with external disturbance," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    2. Liu, Yu-An & Tang, Shengdao & Liu, Yufan & Kong, Qingkai & Wang, Jing, 2021. "Extended dissipative sliding mode control for nonlinear networked control systems via event-triggered mechanism with random uncertain measurement," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    3. Chen, Shyh-Feng, 2015. "Stability analysis and stabilization of 2-D singular Roesser models," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 779-791.
    4. Qi, Wenhai & Zong, Guangdeng & Cheng, Jun & Jiao, Ticao, 2019. "Robust finite-time stabilization for positive delayed semi-Markovian switching systems," Applied Mathematics and Computation, Elsevier, vol. 351(C), pages 139-152.
    5. Yougao Fan & Mao Wang & Guangtong Liu & Bin Zhang & Libin Ma, 2019. "Quasi-time-dependent stabilisation for 2-D switched systems with persistent dwell-time," International Journal of Systems Science, Taylor & Francis Journals, vol. 50(16), pages 2885-2897, December.
    6. Wang, Jiaqi & Fang, Fang & Yi, Xiaojian & Liu, Yajuan, 2021. "Dynamic event-triggered fault estimation and sliding mode fault-tolerant control for networked control systems with sensor faults," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    7. Dai, Mingcheng & Huang, Zhengguo & Xia, Jianwei & Meng, Bo & Wang, Jian & Shen, Hao, 2019. "Non-fragile extended dissipativity-based state feedback control for 2-D Markov jump delayed systems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    8. Guoliang Wei & Linlin Liu & Licheng Wang & Derui Ding, 2020. "Event-triggered control for discrete-time systems with unknown nonlinearities: an interval observer-based approach," International Journal of Systems Science, Taylor & Francis Journals, vol. 51(6), pages 1019-1031, April.
    9. Gholami, Hadi & Shafiei, Mohammad Hossein, 2021. "Finite-time H∞ static and dynamic output feedback control for a class of switched nonlinear time-delay systems," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    10. Shi, Shuang & Fei, Zhongyang & Shi, Zhenpeng & Ren, Shunqing, 2018. "Stability and stabilization for discrete-time switched systems with asynchronism," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 520-536.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jiaxing & Hu, Jun & Cheng, Jun & Wei, Yunliang & Yu, Hui, 2022. "Distributed filtering for time-varying state-saturated systems with packet disorders: An event-triggered case," Applied Mathematics and Computation, Elsevier, vol. 434(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amin Taghieh & Ardashir Mohammadzadeh & Jafar Tavoosi & Saleh Mobayen & Thaned Rojsiraphisal & Jihad H. Asad & Anton Zhilenkov, 2021. "Observer-Based Control for Nonlinear Time-Delayed Asynchronously Switching Systems: A New LMI Approach," Mathematics, MDPI, vol. 9(22), pages 1-25, November.
    2. Huang, Tao & Shao, Yiyu & Li, Liwei & Liu, Yajuan & Shen, Mouquan, 2024. "Guaranteed cost event-triggered H∞ control of uncertain linear system via output disturbance observer," Applied Mathematics and Computation, Elsevier, vol. 473(C).
    3. Liu, Yu-An & Tang, Shengdao & Liu, Yufan & Kong, Qingkai & Wang, Jing, 2021. "Extended dissipative sliding mode control for nonlinear networked control systems via event-triggered mechanism with random uncertain measurement," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    4. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    5. Yao, Hejun & Gao, Fangzheng & Huang, Jiacai & Wu, Yuqiang, 2021. "Global prescribed-time stabilization via time-scale transformation for switched nonlinear systems subject to switching rational powers," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    6. Sakthivel, Rathinasamy & Suveetha, V.T. & Nithya, Venkatesh & Sakthivel, Ramalingam, 2020. "Finite-time fault detection filter design for complex systems with multiple stochastic communication and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    7. Xie, Jiyang & Zhu, Shuqian & Feng, Jun-e, 2020. "Delay-dependent and decay-rate-dependent conditions for exponential mean stability and non-fragile controller design of positive Markov jump linear systems with time-delay," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    8. Cai, Xiao & Zhong, Shouming & Wang, Jun & Shi, Kaibo, 2020. "Robust H∞ control for uncertain delayed T-S fuzzy systems with stochastic packet dropouts," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    9. Liu, Xiaonan & Kao, Yonggui, 2021. "Aperiodically intermittent pinning outer synchronization control for delayed complex dynamical networks with reaction-diffusion terms," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    10. Zhang, Zhiming & Zheng, Wei & Lam, H.K. & Wen, Shuhuan & Sun, Fuchun & Xie, Ping, 2020. "Stability analysis and output feedback control for stochastic networked systems with multiple communication delays and nonlinearities using fuzzy control technique," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    11. Li, Shuo & Xiang, Zhengrong, 2020. "Positivity, exponential stability and disturbance attenuation performance for singular switched positive systems with time-varying distributed delays," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    12. Yang, Yi & Chen, Fei & Lang, Jiahong & Chen, Xiangyong & Wang, Jing, 2021. "Sliding mode control of persistent dwell-time switched systems with random data dropouts," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    13. Zhang, Qiongwen & Cheng, Jun & Liao, Daixi & Cao, Jinde & Alsaadi, Fawaz E, 2023. "Improved Dynamic Event-Triggered Control for Nonlinear Systems with Fading Channels," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    14. Ma, Zheng & Song, Jiasheng & Zhou, Jianping, 2022. "Reliable event-based dissipative filter design for discrete-time system with dynamic quantization and sensor fault," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    15. Lü, Shao-Yu & Jin, Xiao-Zheng & Wu, Xiao-Ming & Ding, Li-Jian & Chi, Jing, 2022. "Robust adaptive event-triggered fault-tolerant control for time-varying systems against perturbations and faulty actuators," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    16. Li, Xin & Wei, Guoliang & Ding, Derui, 2021. "Distributed resilient interval estimation for sensor networks under aperiodic denial-of-service attacks and adaptive event-triggered protocols," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    17. Li, Zhao-Yan & Shang, Shengnan & Lam, James, 2019. "On stability of neutral-type linear stochastic time-delay systems with three different delays," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 147-166.
    18. Zhou, Yaoyao & Chen, Gang, 2021. "Non-fragile H∞ finite-time sliding mode control for stochastic Markovian jump systems with time delay," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    19. Khalid A. Alattas & Mai The Vu & Omid Mofid & Fayez F. M. El-Sousy & Abdullah K. Alanazi & Jan Awrejcewicz & Saleh Mobayen, 2022. "Adaptive Nonsingular Terminal Sliding Mode Control for Performance Improvement of Perturbed Nonlinear Systems," Mathematics, MDPI, vol. 10(7), pages 1-18, March.
    20. Wang, Yudong & Xia, Jianwei & Wang, Zhen & Shen, Hao, 2020. "Design of a fault-tolerant output-feedback controller for thickness control in cold rolling mills," Applied Mathematics and Computation, Elsevier, vol. 369(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:406:y:2021:i:c:s0096300321003556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.