IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v394y2021ics0096300320307050.html
   My bibliography  Save this article

A unified control approach to finite-time stabilization of SOSM dynamics subject to an output constraint

Author

Listed:
  • Liu, Lu
  • Ding, Shihong

Abstract

This paper investigates a control design problem for the second-order sliding mode (SOSM) dynamics with mismatched uncertainty subject to the output constraint by means of the adding a power integrator technique. Firstly, a SOSM dynamics with mismatched uncertainty is constructed by retaining some information in the mismatched channel so as to reduce the uncertainty in the control channel, thereby relaxing the control requirement. Secondly, a barrier Lyapunov function (BLF) is designed in consideration of the output constraint to prevent the considered system from escaping from the output constraint. Moreover, the output constraint can be either symmetric or asymmetric. Thirdly, by embedding the above BLF into the adding a power integrator technique, a SOSM controller can be eventually constructed for the SOSM dynamics with the mismatched uncertainty to solve the output constraint problem. The finite-time stability analysis is proved by Lyapunov theory. The simulation results considering the symmetric constraint as well as the asymmetric constraint are provided to demonstrate the validity of the proposed control method.

Suggested Citation

  • Liu, Lu & Ding, Shihong, 2021. "A unified control approach to finite-time stabilization of SOSM dynamics subject to an output constraint," Applied Mathematics and Computation, Elsevier, vol. 394(C).
  • Handle: RePEc:eee:apmaco:v:394:y:2021:i:c:s0096300320307050
    DOI: 10.1016/j.amc.2020.125752
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320307050
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125752?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Du, Haibo & Yu, Bo & Wei, Jiajia & Zhang, Jun & Wu, Di & Tao, Weiqing, 2020. "Attitude trajectory planning and attitude control for quad-rotor aircraft based on finite-time control technique," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    2. Mathiyalagan, Kalidass & Sangeetha, G., 2020. "Second-order sliding mode control for nonlinear fractional-order systems," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alejandro Rincón & Fredy E. Hoyos & John E. Candelo-Becerra, 2022. "An Output Feedback Controller for a Second-Order System Subject to Asymmetric Output Constraint Based on Lyapunov Function with Unlimited Domain," Mathematics, MDPI, vol. 10(11), pages 1-20, May.
    2. Liu, Hui & Li, Xiaohua, 2023. "A prescribed-performance-based adaptive finite-time tracking control scheme circumventing the dependence on the system initial condition," Applied Mathematics and Computation, Elsevier, vol. 448(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Fang & Gao, Yali & Zhou, Chao & Zong, Qun, 2022. "Disturbance observer-based backstepping formation control of multiple quadrotors with asymmetric output error constraints," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    2. Li, Hui & Kao, YongGui & Stamova, Ivanka & Shao, Chuntao, 2021. "Global asymptotic stability and S-asymptotic ω-periodicity of impulsive non-autonomous fractional-order neural networks," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    3. Wang, Di & Liu, Can & Ding, Dawei & Gao, Suixiang & Chu, Ming, 2022. "Finite-time optimal tracking control using augmented error system method," Applied Mathematics and Computation, Elsevier, vol. 424(C).
    4. Mei-Qi, Wang & Wen-Li, Ma & En-Li, Chen & Yu-Jian, Chang & Cui-Yan, Wang, 2022. "Principal resonance analysis of piecewise nonlinear oscillator with fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    5. Wang, Haitao & Chen, Xiangyong & Wang, Jing, 2022. "H∞ sliding mode control for PDT-switched nonlinear systems under the dynamic event-triggered mechanism," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    6. Arthi, G. & Suganya, K., 2021. "Controllability of higher order stochastic fractional control delay systems involving damping behavior," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    7. Khalid A. Alattas & Mai The Vu & Omid Mofid & Fayez F. M. El-Sousy & Afef Fekih & Saleh Mobayen, 2022. "Barrier Function-Based Nonsingular Finite-Time Tracker for Quadrotor UAVs Subject to Uncertainties and Input Constraints," Mathematics, MDPI, vol. 10(10), pages 1-16, May.
    8. Ning, Jinghua & Hua, Changchun, 2022. "H∞ output feedback control for fractional-order T-S fuzzy model with time-delay," Applied Mathematics and Computation, Elsevier, vol. 416(C).
    9. Majid Roohi & Saeed Mirzajani & Andreas Basse-O’Connor, 2023. "A No-Chatter Single-Input Finite-Time PID Sliding Mode Control Technique for Stabilization of a Class of 4D Chaotic Fractional-Order Laser Systems," Mathematics, MDPI, vol. 11(21), pages 1-22, October.
    10. Yue, Xiaohui & Shao, Xingling & Li, Jie, 2021. "Prescribed chattering reduction control for quadrotors using aperiodic signal updating," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    11. Wang, Mei-Qi & Ma, Wen-Li & Li, Yuan & Chen, En-Li & Liu, Peng-Fei & Zhang, Ming-Zhi, 2022. "Dynamic analysis of piecewise nonlinear systems with fractional differential delay feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    12. Mousavi, Yashar & Bevan, Geraint & Kucukdemiral, Ibrahim Beklan & Fekih, Afef, 2022. "Sliding mode control of wind energy conversion systems: Trends and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:394:y:2021:i:c:s0096300320307050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.