IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v375y2020ics0096300320300485.html
   My bibliography  Save this article

Finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities

Author

Listed:
  • Du, Feifei
  • Lu, Jun-Guo

Abstract

This paper is concerned with finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities. By use of the method of steps and the generalized Gronwall inequality, a new criterion on finite-time stability is obtained. Two numerical examples are given to illustrate the effectiveness of our main results.

Suggested Citation

  • Du, Feifei & Lu, Jun-Guo, 2020. "Finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities," Applied Mathematics and Computation, Elsevier, vol. 375(C).
  • Handle: RePEc:eee:apmaco:v:375:y:2020:i:c:s0096300320300485
    DOI: 10.1016/j.amc.2020.125079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320300485
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pang Denghao & Jiang Wei, 2014. "Finite-Time Stability of Neutral Fractional Time-Delay Systems via Generalized Gronwalls Inequality," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-4, February.
    2. Hai Zhang & Renyu Ye & Song Liu & Jinde Cao & Ahmad Alsaedi & Xiaodi Li, 2018. "LMI-based approach to stability analysis for fractional-order neural networks with discrete and distributed delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(3), pages 537-545, February.
    3. Feifei Wang & Diyi Chen & Xinguang Zhang & Yonghong Wu, 2017. "Finite-time stability of a class of nonlinear fractional-order system with the discrete time delay," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(5), pages 984-993, April.
    4. Li, Mengmeng & Wang, JinRong, 2018. "Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 324(C), pages 254-265.
    5. Zhou, Xian-Feng & Yang, Fuli & Jiang, Wei, 2015. "Analytic study on linear neutral fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 295-307.
    6. Čermák, Jan & Došlá, Zuzana & Kisela, Tomáš, 2017. "Fractional differential equations with a constant delay: Stability and asymptotics of solutions," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 336-350.
    7. Wang, Ying & Liu, Lishan & Zhang, Xinguang & Wu, Yonghong, 2015. "Positive solutions of an abstract fractional semipositone differential system model for bioprocesses of HIV infection," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 312-324.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xiang & Wang, Peiguang & Anderson, Douglas R., 2022. "On stability and feedback control of discrete fractional order singular systems with multiple time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    2. Zhang, Shaohua & Wang, Cong & Zhang, Hongli & Ma, Ping & Li, Xinkai, 2022. "Dynamic analysis and bursting oscillation control of fractional-order permanent magnet synchronous motor system," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    3. Aghayan, Zahra Sadat & Alfi, Alireza & Mousavi, Yashar & Kucukdemiral, Ibrahim Beklan & Fekih, Afef, 2022. "Guaranteed cost robust output feedback control design for fractional-order uncertain neutral delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    4. Du, Feifei & Lu, Jun-Guo, 2021. "New criterion for finite-time synchronization of fractional order memristor-based neural networks with time delay," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    5. Chen, Yuting & Li, Xiaoyan & Liu, Song, 2021. "Finite-time stability of ABC type fractional delay difference equations," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Zhang, Zhe & Wang, Yaonan & Zhang, Jing & Ai, Zhaoyang & Liu, Feng, 2022. "Novel stability results of multivariable fractional-order system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    7. Du, Feifei & Lu, Jun-Guo, 2021. "Explicit solutions and asymptotic behaviors of Caputo discrete fractional-order equations with variable coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    8. Du, Feifei & Lu, Jun-Guo, 2021. "New approach to finite-time stability for fractional-order BAM neural networks with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    9. Luo, Danfeng & Tian, Mengquan & Zhu, Quanxin, 2022. "Some results on finite-time stability of stochastic fractional-order delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    10. Zhao, Liuwei & Jin, Shuai & Jiang, Hongyun, 2022. "Investigation of complex dynamics and chaos control of the duopoly supply chain under the mixed carbon policy," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pang, Denghao & Jiang, Wei & Liu, Song & Jun, Du, 2019. "Stability analysis for a single degree of freedom fractional oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 498-506.
    2. Kui Liu & Michal Fečkan & D. O’Regan & JinRong Wang, 2019. "Hyers–Ulam Stability and Existence of Solutions for Differential Equations with Caputo–Fabrizio Fractional Derivative," Mathematics, MDPI, vol. 7(4), pages 1-14, April.
    3. Wang, Jian & Zhu, Yuanguo & Gu, Yajing & Lu, Ziqiang, 2021. "Solutions of linear uncertain fractional order neutral differential equations," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    4. Yongyi Gu & Fanning Meng, 2019. "Searching for Analytical Solutions of the (2+1)-Dimensional KP Equation by Two Different Systematic Methods," Complexity, Hindawi, vol. 2019, pages 1-11, August.
    5. Yang, Zhanying & Zhang, Jie & Zhang, Zhihui & Mei, Jun, 2023. "An improved criterion on finite-time stability for fractional-order fuzzy cellular neural networks involving leakage and discrete delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 910-925.
    6. Karthick, S.A. & Sakthivel, R. & Ma, Y.K. & Mohanapriya, S. & Leelamani, A., 2019. "Disturbance rejection of fractional-order T-S fuzzy neural networks based on quantized dynamic output feedback controller," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 846-857.
    7. Longfei Lin & Yansheng Liu & Daliang Zhao, 2021. "Study on Implicit-Type Fractional Coupled System with Integral Boundary Conditions," Mathematics, MDPI, vol. 9(4), pages 1-15, February.
    8. Hou, Mimi & Xi, Xuan-Xuan & Zhou, Xian-Feng, 2021. "Boundary control of a fractional reaction-diffusion equation coupled with fractional ordinary differential equations with delay," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    9. Christopher N. Angstmann & Stuart-James M. Burney & Bruce I. Henry & Byron A. Jacobs & Zhuang Xu, 2023. "A Systematic Approach to Delay Functions," Mathematics, MDPI, vol. 11(21), pages 1-34, November.
    10. Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2019. "A novel method to solve variable-order fractional delay differential equations based in lagrange interpolations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 266-282.
    11. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    12. Wanassi, Om Kalthoum & Torres, Delfim F.M., 2023. "An integral boundary fractional model to the world population growth," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    13. Sathiyaraj, T. & Fečkan, Michal & Wang, JinRong, 2020. "Null controllability results for stochastic delay systems with delayed perturbation of matrices," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    14. Hristo Kiskinov & Mariyan Milev & Andrey Zahariev, 2022. "About the Resolvent Kernel of Neutral Linear Fractional System with Distributed Delays," Mathematics, MDPI, vol. 10(23), pages 1-17, December.
    15. Aydin, Mustafa & Mahmudov, Nazim I., 2022. "On a study for the neutral Caputo fractional multi-delayed differential equations with noncommutative coefficient matrices," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    16. Luo, Danfeng & Tian, Mengquan & Zhu, Quanxin, 2022. "Some results on finite-time stability of stochastic fractional-order delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    17. Du, Feifei & Jia, Baoguo, 2020. "Finite time stability of fractional delay difference systems: A discrete delayed Mittag-Leffler matrix function approach," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    18. Sheng Zhang & Lijie Zhang & Bo Xu, 2019. "Rational Waves and Complex Dynamics: Analytical Insights into a Generalized Nonlinear Schrödinger Equation with Distributed Coefficients," Complexity, Hindawi, vol. 2019, pages 1-17, March.
    19. Wang, Mei & Du, Feifei & Chen, Churong & Jia, Baoguo, 2019. "Asymptotic stability of (q, h)-fractional difference equations," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 158-167.
    20. Ahmed Salem & Rawia Babusail, 2022. "Finite-Time Stability in Nonhomogeneous Delay Differential Equations of Fractional Hilfer Type," Mathematics, MDPI, vol. 10(9), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:375:y:2020:i:c:s0096300320300485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.