IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v257y2015icp295-307.html
   My bibliography  Save this article

Analytic study on linear neutral fractional differential equations

Author

Listed:
  • Zhou, Xian-Feng
  • Yang, Fuli
  • Jiang, Wei

Abstract

This paper is devoted to investigating linear neutral fractional differential equations with constant coefficients. The existence, uniqueness and iterative formula of the solution are obtained. Meanwhile, dependence of the solution on initial value and the general solution represented by a fundamental solution matrix are discussed. Several examples are given to illustrate the applications of our results. Some conclusions in the literature are extended greatly.

Suggested Citation

  • Zhou, Xian-Feng & Yang, Fuli & Jiang, Wei, 2015. "Analytic study on linear neutral fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 295-307.
  • Handle: RePEc:eee:apmaco:v:257:y:2015:i:c:p:295-307
    DOI: 10.1016/j.amc.2014.12.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630031401710X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.12.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tavazoei, Mohammad Saleh & Haeri, Mohammad, 2009. "A note on the stability of fractional order systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1566-1576.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Mimi & Xi, Xuan-Xuan & Zhou, Xian-Feng, 2021. "Boundary control of a fractional reaction-diffusion equation coupled with fractional ordinary differential equations with delay," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    2. Wang, Jian & Zhu, Yuanguo & Gu, Yajing & Lu, Ziqiang, 2021. "Solutions of linear uncertain fractional order neutral differential equations," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    3. Du, Feifei & Lu, Jun-Guo, 2020. "Finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities," Applied Mathematics and Computation, Elsevier, vol. 375(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Muñoz-Vázquez, Aldo Jonathan & Ortiz-Moctezuma, Manuel Benjamín & Sánchez-Orta, Anand & Parra-Vega, Vicente, 2019. "Adaptive robust control of fractional-order systems with matched and mismatched disturbances," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 162(C), pages 85-96.
    3. Silva-Juárez, Alejandro & Tlelo-Cuautle, Esteban & de la Fraga, Luis Gerardo & Li, Rui, 2021. "Optimization of the Kaplan-Yorke dimension in fractional-order chaotic oscillators by metaheuristics," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    4. Dongya Li & Xiaoping Zhang & Shuang Wang & Fengxiang You, 2022. "Robust Synchronization of Fractional-Order Chaotic System Subject to Disturbances," Mathematics, MDPI, vol. 10(24), pages 1-15, December.
    5. Ravi Agarwal & Snezhana Hristova & Donal O’Regan, 2018. "Applications of Lyapunov Functions to Caputo Fractional Differential Equations," Mathematics, MDPI, vol. 6(11), pages 1-17, October.
    6. Zhang, Zhe & Zhang, Jing & Ai, Zhaoyang & Cheng, FanYong & Liu, Feng, 2020. "A novel general stability criterion of time-delay fractional-order nonlinear systems based on WILL Deduction Method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 328-344.
    7. Yang, Xue & Su, Yongmei & Yang, Liangli & Zhuo, Xinjian, 2022. "Global analysis and simulation of a fractional order HBV immune model," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    8. Munoz-Pacheco, J.M. & Zambrano-Serrano, E. & Volos, Ch. & Tacha, O.I. & Stouboulos, I.N. & Pham, V.-T., 2018. "A fractional order chaotic system with a 3D grid of variable attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 69-78.
    9. Orest Lozynskyy & Damian Mazur & Yaroslav Marushchak & Bogdan Kwiatkowski & Andriy Lozynskyy & Tadeusz Kwater & Bohdan Kopchak & Przemysław Hawro & Lidiia Kasha & Robert Pękala & Robert Ziemba & Bogus, 2021. "Formation of Characteristic Polynomials on the Basis of Fractional Powers j of Dynamic Systems and Stability Problems of Such Systems," Energies, MDPI, vol. 14(21), pages 1-35, November.
    10. Chen, Yiming & Ke, Xiaohong & Wei, Yanqiao, 2015. "Numerical algorithm to solve system of nonlinear fractional differential equations based on wavelets method and the error analysis," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 475-488.
    11. Zhang, Xuefeng & Chen, Shunan & Zhang, Jin-Xi, 2022. "Adaptive sliding mode consensus control based on neural network for singular fractional order multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    12. Bahrampour, Elham & Asemani, Mohammad Hassan & Dehghani, Maryam, 2023. "Robust global synchronization of delayed incommensurate fractional-order gene regulatory networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    13. W. K. Zahra & S. M. Elkholy, 2012. "The Use of Cubic Splines in the Numerical Solution of Fractional Differential Equations," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2012, pages 1-16, August.
    14. Yan, Ye & Kou, Chunhai, 2012. "Stability analysis for a fractional differential model of HIV infection of CD4+ T-cells with time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(9), pages 1572-1585.
    15. Zhang, Jia-Rui & Lu, Jun-Guo & Zhang, Qing-Hao, 2024. "Robust asymptotic stability analysis for fractional-order systems with commensurate time delays: The 1 < β ≤ 2 case," Applied Mathematics and Computation, Elsevier, vol. 475(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:257:y:2015:i:c:p:295-307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.