IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i9p1359-d796912.html
   My bibliography  Save this article

Finite-Time Stability Analysis of Linear Differential Systems with Pure Delay

Author

Listed:
  • Ahmed M. Elshenhab

    (School of Mathematics, Harbin Institute of Technology, Harbin 150001, China
    Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt)

  • Xingtao Wang

    (School of Mathematics, Harbin Institute of Technology, Harbin 150001, China)

  • Omar Bazighifan

    (Section of Mathematics, International Telematic University Uninettuno, CorsoVittorio Emanuele II, 39, 00186 Roma, Italy)

  • Jan Awrejcewicz

    (Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowski St., 90-924 Lodz, Poland)

Abstract

Nonhomogeneous systems governed by second-order linear differential equations with pure delay are considered. As an application, the exact solutions of these systems and their delayed matrix functions are used to obtain the finite-time stability results. Our results extend and improve some previous results by removing some restrictive conditions. Finally, an example is provided to illustrate our theoretical results.

Suggested Citation

  • Ahmed M. Elshenhab & Xingtao Wang & Omar Bazighifan & Jan Awrejcewicz, 2022. "Finite-Time Stability Analysis of Linear Differential Systems with Pure Delay," Mathematics, MDPI, vol. 10(9), pages 1-10, April.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1359-:d:796912
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/9/1359/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/9/1359/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Mengmeng & Wang, JinRong, 2018. "Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 324(C), pages 254-265.
    2. Elshenhab, Ahmed M. & Wang, Xing Tao, 2021. "Representation of solutions of linear differential systems with pure delay and multiple delays with linear parts given by non-permutable matrices," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Selvam, Anjapuli Panneer & Govindaraj, Venkatesan, 2024. "Investigation of controllability and stability of fractional dynamical systems with delay in control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 89-104.
    2. Ghada AlNemer & Mohamed Hosny & Ramalingam Udhayakumar & Ahmed M. Elshenhab, 2024. "Existence and Hyers–Ulam Stability of Stochastic Delay Systems Governed by the Rosenblatt Process," Mathematics, MDPI, vol. 12(11), pages 1-15, June.
    3. Eva Kaslik & Mihaela Neamţu & Anca Rădulescu, 2022. "Preface to the Special Issue on “Advances in Differential Dynamical Systems with Applications to Economics and Biology”," Mathematics, MDPI, vol. 10(19), pages 1-3, September.
    4. Barakah Almarri & Xingtao Wang & Ahmed M. Elshenhab, 2022. "Controllability of Stochastic Delay Systems Driven by the Rosenblatt Process," Mathematics, MDPI, vol. 10(22), pages 1-20, November.
    5. Ahmed M. Elshenhab & Xingtao Wang & Clemente Cesarano & Barakah Almarri & Osama Moaaz, 2022. "Finite-Time Stability Analysis of Fractional Delay Systems," Mathematics, MDPI, vol. 10(11), pages 1-11, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aydin, Mustafa & Mahmudov, Nazim I., 2022. "On a study for the neutral Caputo fractional multi-delayed differential equations with noncommutative coefficient matrices," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    2. Ahmed M. Elshenhab & Xingtao Wang & Clemente Cesarano & Barakah Almarri & Osama Moaaz, 2022. "Finite-Time Stability Analysis of Fractional Delay Systems," Mathematics, MDPI, vol. 10(11), pages 1-11, May.
    3. Kui Liu & Michal Fečkan & D. O’Regan & JinRong Wang, 2019. "Hyers–Ulam Stability and Existence of Solutions for Differential Equations with Caputo–Fabrizio Fractional Derivative," Mathematics, MDPI, vol. 7(4), pages 1-14, April.
    4. Ahmed M. Elshenhab & Xingtao Wang, 2022. "Controllability and Hyers–Ulam Stability of Differential Systems with Pure Delay," Mathematics, MDPI, vol. 10(8), pages 1-18, April.
    5. Christopher N. Angstmann & Stuart-James M. Burney & Bruce I. Henry & Byron A. Jacobs & Zhuang Xu, 2023. "A Systematic Approach to Delay Functions," Mathematics, MDPI, vol. 11(21), pages 1-34, November.
    6. Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2019. "A novel method to solve variable-order fractional delay differential equations based in lagrange interpolations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 266-282.
    7. Sathiyaraj, T. & Fečkan, Michal & Wang, JinRong, 2020. "Null controllability results for stochastic delay systems with delayed perturbation of matrices," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    8. Hristo Kiskinov & Mariyan Milev & Andrey Zahariev, 2022. "About the Resolvent Kernel of Neutral Linear Fractional System with Distributed Delays," Mathematics, MDPI, vol. 10(23), pages 1-17, December.
    9. Luo, Danfeng & Tian, Mengquan & Zhu, Quanxin, 2022. "Some results on finite-time stability of stochastic fractional-order delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    10. Du, Feifei & Jia, Baoguo, 2020. "Finite time stability of fractional delay difference systems: A discrete delayed Mittag-Leffler matrix function approach," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    11. Wang, Mei & Du, Feifei & Chen, Churong & Jia, Baoguo, 2019. "Asymptotic stability of (q, h)-fractional difference equations," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 158-167.
    12. Ahmed Salem & Rawia Babusail, 2022. "Finite-Time Stability in Nonhomogeneous Delay Differential Equations of Fractional Hilfer Type," Mathematics, MDPI, vol. 10(9), pages 1-14, May.
    13. Xu, Changjin & Liao, Maoxin & Li, Peiluan & Guo, Ying & Xiao, Qimei & Yuan, Shuai, 2019. "Influence of multiple time delays on bifurcation of fractional-order neural networks," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 565-582.
    14. Lu, Qiu & Xiao, Min & Tao, Binbin & Huang, Chengdai & Shi, Shuo & Wang, Zhengxin & Jiang, Guoping, 2019. "Complex dynamic behaviors of a congestion control system under a novel PD1n control law: Stability, bifurcation and periodic oscillations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 242-252.
    15. Du, Feifei & Lu, Jun-Guo, 2020. "Finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    16. Ravi Agarwal & Snezhana Hristova & Donal O’Regan, 2019. "Explicit Solutions of Initial Value Problems for Linear Scalar Riemann-Liouville Fractional Differential Equations With a Constant Delay," Mathematics, MDPI, vol. 8(1), pages 1-14, December.
    17. Pang, Denghao & Jiang, Wei & Liu, Song & Jun, Du, 2019. "Stability analysis for a single degree of freedom fractional oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 498-506.
    18. Ekaterina Madamlieva & Hristo Kiskinov & Milena Petkova & Andrey Zahariev, 2022. "On the Preservation with Respect to Nonlinear Perturbations of the Stability Property for Nonautonomous Linear Neutral Fractional Systems with Distributed Delays," Mathematics, MDPI, vol. 10(15), pages 1-20, July.
    19. Changjin Xu & Maoxin Liao & Peiluan Li & Qimei Xiao & Shuai Yuan, 2019. "Control Strategy for a Fractional-Order Chaotic Financial Model," Complexity, Hindawi, vol. 2019, pages 1-14, April.
    20. Mahmudov, Nazim I. & Aydın, Mustafa, 2021. "Representation of solutions of nonhomogeneous conformable fractional delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1359-:d:796912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.