IDEAS home Printed from https://ideas.repec.org/a/hin/complx/7952871.html
   My bibliography  Save this article

Fractional Soliton Dynamics and Spectral Transform of Time-Fractional Nonlinear Systems: A Concrete Example

Author

Listed:
  • Sheng Zhang
  • Yuanyuan Wei
  • Bo Xu

Abstract

In this paper, the spectral transform with the reputation of nonlinear Fourier transform is extended for the first time to a local time-fractional Korteweg-de vries (tfKdV) equation. More specifically, a linear spectral problem associated with the KdV equation of integer order is first equipped with local time-fractional derivative. Based on the spectral problem with the equipped local time-fractional derivative, the local tfKdV equation with Lax integrability is then derived and solved by extending the spectral transform. As a result, a formula of exact solution with Mittag-Leffler functions is obtained. Finally, in the case of reflectionless potential the obtained exact solution is reduced to fractional n -soliton solution. In order to gain more insights into the fractional n -soliton dynamics, the dynamical evolutions of the reduced fractional one-, two-, and three-soliton solutions are simulated. It is shown that the velocities of the reduced fractional one-, two-, and three-soliton solutions change with the fractional order.

Suggested Citation

  • Sheng Zhang & Yuanyuan Wei & Bo Xu, 2019. "Fractional Soliton Dynamics and Spectral Transform of Time-Fractional Nonlinear Systems: A Concrete Example," Complexity, Hindawi, vol. 2019, pages 1-9, August.
  • Handle: RePEc:hin:complx:7952871
    DOI: 10.1155/2019/7952871
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/7952871.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/7952871.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/7952871?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. He, Ji-Huan & Wu, Xu-Hong, 2006. "Exp-function method for nonlinear wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 700-708.
    2. Yang, Xiao-Jun & Machado, J.A. Tenreiro, 2017. "A new fractional operator of variable order: Application in the description of anomalous diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 276-283.
    3. Yan, Zhenya, 2019. "The NLS(n, n) equation: Multi-hump compactons and their stability and interaction scenarios," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 25-31.
    4. Ning, Tong-ke & Chen, Deng-yuan & Zhang, Da-jun, 2004. "The exact solutions for the nonisospectral AKNS hierarchy through the inverse scattering transform," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 339(3), pages 248-266.
    5. Xiao-Jun Yang & Jordan Hristov & H. M. Srivastava & Bashir Ahmad, 2014. "Modelling Fractal Waves on Shallow Water Surfaces via Local Fractional Korteweg-de Vries Equation," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-10, June.
    6. Sheng Zhang & Siyu Hong, 2017. "Lax Integrability and Soliton Solutions for a Nonisospectral Integrodifferential System," Complexity, Hindawi, vol. 2017, pages 1-10, November.
    7. Wang, Ying & Liu, Lishan & Zhang, Xinguang & Wu, Yonghong, 2015. "Positive solutions of an abstract fractional semipositone differential system model for bioprocesses of HIV infection," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 312-324.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheng Zhang & Jiao Gao & Bo Xu, 2022. "An Integrable Evolution System and Its Analytical Solutions with the Help of Mixed Spectral AKNS Matrix Problem," Mathematics, MDPI, vol. 10(21), pages 1-16, October.
    2. Sheng Zhang & Lijie Zhang & Bo Xu, 2019. "Rational Waves and Complex Dynamics: Analytical Insights into a Generalized Nonlinear Schrödinger Equation with Distributed Coefficients," Complexity, Hindawi, vol. 2019, pages 1-17, March.
    3. Heydari, M.H. & Razzaghi, M. & Avazzadeh, Z., 2021. "Orthonormal shifted discrete Chebyshev polynomials: Application for a fractal-fractional version of the coupled Schrödinger-Boussinesq system," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    4. Sheng Zhang & Siyu Hong, 2017. "Lax Integrability and Soliton Solutions for a Nonisospectral Integrodifferential System," Complexity, Hindawi, vol. 2017, pages 1-10, November.
    5. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    6. Longfei Lin & Yansheng Liu & Daliang Zhao, 2021. "Study on Implicit-Type Fractional Coupled System with Integral Boundary Conditions," Mathematics, MDPI, vol. 9(4), pages 1-15, February.
    7. Suheel Abdullah Malik & Ijaz Mansoor Qureshi & Muhammad Amir & Aqdas Naveed Malik & Ihsanul Haq, 2015. "Numerical Solution to Generalized Burgers'-Fisher Equation Using Exp-Function Method Hybridized with Heuristic Computation," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-15, March.
    8. Hamid Boulares & Abdelkader Moumen & Khaireddine Fernane & Jehad Alzabut & Hicham Saber & Tariq Alraqad & Mhamed Benaissa, 2023. "On Solutions of Fractional Integrodifferential Systems Involving Ψ-Caputo Derivative and Ψ-Riemann–Liouville Fractional Integral," Mathematics, MDPI, vol. 11(6), pages 1-10, March.
    9. Asifa, & Kumam, Poom & Tassaddiq, Asifa & Watthayu, Wiboonsak & Shah, Zahir & Anwar, Talha, 2022. "Modeling and simulation based investigation of unsteady MHD radiative flow of rate type fluid; a comparative fractional analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 486-507.
    10. Nguyen, Lu Trong Khiem, 2015. "Modified homogeneous balance method: Applications and new solutions," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 148-155.
    11. M. Ali Akbar & Md. Nur Alam & Md. Golam Hafez, 2016. "Application of the novel (G′/G)-expansion method to construct traveling wave solutions to the positive Gardner-KP equation," Indian Journal of Pure and Applied Mathematics, Springer, vol. 47(1), pages 85-96, March.
    12. Zhenduo Sun & Nengneng Qing & Xiangzhi Kong, 2023. "Asymptotic Hybrid Projection Lag Synchronization of Nonidentical Variable-Order Fractional Complex Dynamic Networks," Mathematics, MDPI, vol. 11(13), pages 1-17, June.
    13. Campos, Rafael G. & Huet, Adolfo, 2018. "Numerical inversion of the Laplace transform and its application to fractional diffusion," Applied Mathematics and Computation, Elsevier, vol. 327(C), pages 70-78.
    14. Jing Chang & Jin Zhang & Ming Cai, 2021. "Series Solutions of High-Dimensional Fractional Differential Equations," Mathematics, MDPI, vol. 9(17), pages 1-21, August.
    15. Zaheer Masood & Muhammad Asif Zahoor Raja & Naveed Ishtiaq Chaudhary & Khalid Mehmood Cheema & Ahmad H. Milyani, 2021. "Fractional Dynamics of Stuxnet Virus Propagation in Industrial Control Systems," Mathematics, MDPI, vol. 9(17), pages 1-27, September.
    16. Hassani, Hossein & Naraghirad, Eskandar, 2019. "A new computational method based on optimization scheme for solving variable-order time fractional Burgers’ equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 162(C), pages 1-17.
    17. Paul Hauseux & Jack S Hale & Stéphane P A Bordas, 2017. "Calculating the Malliavin derivative of some stochastic mechanics problems," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-18, December.
    18. Bekir, Ahmet & Cevikel, Adem C., 2009. "New exact travelling wave solutions of nonlinear physical models," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1733-1739.
    19. Razminia, Kambiz & Razminia, Abolhassan & Baleanu, Dumitru, 2019. "Fractal-fractional modelling of partially penetrating wells," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 135-142.
    20. Zhou, Jiangrui & Zhou, Rui & Zhu, Shihui, 2020. "Peakon, rational function and periodic solutions for Tzitzeica–Dodd–Bullough type equations," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:7952871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.