IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v226y2024icp413-437.html
   My bibliography  Save this article

Global stability and synchronization of stochastic discrete-time variable-order fractional-order delayed quaternion-valued neural networks

Author

Listed:
  • Ran, Jie
  • Zhou, Yonghui
  • Pu, Hao

Abstract

This study proposes a novel tool for neural network modeling by integrating quaternion theory, discrete fractional calculus, and stochastic analysis, thereby introducing a stochastic discrete fractional delayed quaternion-valued neural network model. Firstly, we prove the existence and uniqueness of the equilibrium point for the model by using the homeomorphism mapping theory. Secondly, we give some new inequalities in the quaternion domain. Through these inequalities and Lyapunov theory, we establish sufficient linear matrix inequality (LMI) conditions on the global mean square stability and global mean square Mittag-Leffler stability for the model. Furthermore, the linear feedback control approach is employed to derive sufficient LMI conditions that achieve the model’s global mean square synchronization and global mean square Mittag-Leffler synchronization. Finally, several numerical examples validate the findings obtained.

Suggested Citation

  • Ran, Jie & Zhou, Yonghui & Pu, Hao, 2024. "Global stability and synchronization of stochastic discrete-time variable-order fractional-order delayed quaternion-valued neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 226(C), pages 413-437.
  • Handle: RePEc:eee:matcom:v:226:y:2024:i:c:p:413-437
    DOI: 10.1016/j.matcom.2024.07.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847542400274X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.07.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xiao-Li & Li, Hong-Li & Kao, Yonggui & Zhang, Long & Jiang, Haijun, 2022. "Global Mittag-Leffler synchronization of discrete-time fractional-order neural networks with time delays," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    2. Usa Humphries & Grienggrai Rajchakit & Pramet Kaewmesri & Pharunyou Chanthorn & Ramalingam Sriraman & Rajendran Samidurai & Chee Peng Lim, 2020. "Global Stability Analysis of Fractional-Order Quaternion-Valued Bidirectional Associative Memory Neural Networks," Mathematics, MDPI, vol. 8(5), pages 1-27, May.
    3. Li, Hong-Li & Zhang, Long & Hu, Cheng & Jiang, Haijun & Cao, Jinde, 2020. "Global Mittag-Leffler synchronization of fractional-order delayed quaternion-valued neural networks: Direct quaternion approach," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    4. Thabet Abdeljawad, 2013. "On Delta and Nabla Caputo Fractional Differences and Dual Identities," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-12, July.
    5. Tu, Zhengwen & Zhao, Yongxiang & Ding, Nan & Feng, Yuming & Zhang, Wei, 2019. "Stability analysis of quaternion-valued neural networks with both discrete and distributed delays," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 342-353.
    6. Li, Ruoxia & Cao, Jinde & Xue, Changfeng & Manivannan, R., 2021. "Quasi-stability and quasi-synchronization control of quaternion-valued fractional-order discrete-time memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    7. Zeng, Runtian & Song, Qiankun, 2024. "Mean-square exponential input-to-state stability for stochastic neutral-type quaternion-valued neural networks via Itô’s formula of quaternion version," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    8. Grienggrai Rajchakit & Anbalagan Pratap & Ramachandran Raja & Jinde Cao & Jehad Alzabut & Chuangxia Huang, 2019. "Hybrid Control Scheme for Projective Lag Synchronization of Riemann–Liouville Sense Fractional Order Memristive BAM NeuralNetworks with Mixed Delays," Mathematics, MDPI, vol. 7(8), pages 1-23, August.
    9. Rajchakit, G. & Sriraman, R. & Lim, C.P. & Unyong, B., 2022. "Existence, uniqueness and global stability of Clifford-valued neutral-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 508-527.
    10. Mo, Wenjun & Bao, Haibo, 2022. "Finite-time synchronization for fractional-order quaternion-valued coupled neural networks with saturated impulse," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    11. Thabet Abdeljawad & Ferhan M. Atici, 2012. "On the Definitions of Nabla Fractional Operators," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-13, October.
    12. Zhao, Mingfang & Li, Hong-Li & Zhang, Long & Hu, Cheng & Jiang, Haijun, 2023. "Quasi-synchronization of discrete-time fractional-order quaternion-valued memristive neural networks with time delays and uncertain parameters," Applied Mathematics and Computation, Elsevier, vol. 453(C).
    13. Grienggrai Rajchakit & Pharunyou Chanthorn & Pramet Kaewmesri & Ramalingam Sriraman & Chee Peng Lim, 2020. "Global Mittag–Leffler Stability and Stabilization Analysis of Fractional-Order Quaternion-Valued Memristive Neural Networks," Mathematics, MDPI, vol. 8(3), pages 1-29, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajchakit, G. & Sriraman, R. & Lim, C.P. & Unyong, B., 2022. "Existence, uniqueness and global stability of Clifford-valued neutral-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 508-527.
    2. Cui, Xueke & Li, Hong-Li & Zhang, Long & Hu, Cheng & Bao, Haibo, 2023. "Complete synchronization for discrete-time fractional-order coupled neural networks with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    3. Zhang, Zhengqiu & Yang, Zhen, 2023. "Asymptotic stability for quaternion-valued fuzzy BAM neural networks via integral inequality approach," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    4. Gan, Binbin & Chen, Hao & Xu, Biao & Kang, Wei, 2023. "A norm stability condition of neutral-type Cohen-Grossberg neural networks with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    5. Gao, Panqing & Ye, Renyu & Zhang, Hai & Stamova, Ivanka & Cao, Jinde, 2024. "Asymptotic stability and quantitative synchronization of fractional competitive neural networks with multiple restrictions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 338-353.
    6. Sasikumar, N.P. & Balasubramaniam, P., 2024. "Equation-free data-driven synchronization of rod-type plasma torch systems with a Koopman approach," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    7. Jibin Yang & Xiaohui Xu & Quan Xu & Haolin Yang & Mengge Yu, 2024. "Stability and Synchronization of Delayed Quaternion-Valued Neural Networks under Multi-Disturbances," Mathematics, MDPI, vol. 12(6), pages 1-26, March.
    8. Zhang, Xiao-Li & Li, Hong-Li & Kao, Yonggui & Zhang, Long & Jiang, Haijun, 2022. "Global Mittag-Leffler synchronization of discrete-time fractional-order neural networks with time delays," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    9. Wang, Chen & Zhang, Hai & Ye, Renyu & Zhang, Weiwei & Zhang, Hongmei, 2023. "Finite time passivity analysis for Caputo fractional BAM reaction–diffusion delayed neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 424-443.
    10. Luo, Lingao & Li, Lulu & Huang, Wei, 2024. "Asymptotic stability of fractional-order Hopfield neural networks with event-triggered delayed impulses and switching effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 491-504.
    11. Zhao, Mingfang & Li, Hong-Li & Zhang, Long & Hu, Cheng & Jiang, Haijun, 2023. "Quasi-synchronization of discrete-time fractional-order quaternion-valued memristive neural networks with time delays and uncertain parameters," Applied Mathematics and Computation, Elsevier, vol. 453(C).
    12. Usa Humphries & Grienggrai Rajchakit & Pramet Kaewmesri & Pharunyou Chanthorn & Ramalingam Sriraman & Rajendran Samidurai & Chee Peng Lim, 2020. "Global Stability Analysis of Fractional-Order Quaternion-Valued Bidirectional Associative Memory Neural Networks," Mathematics, MDPI, vol. 8(5), pages 1-27, May.
    13. Jiraporn Reunsumrit & Thanin Sitthiwirattham, 2020. "On the Nonlocal Fractional Delta-Nabla Sum Boundary Value Problem for Sequential Fractional Delta-Nabla Sum-Difference Equations," Mathematics, MDPI, vol. 8(4), pages 1-13, March.
    14. Rashid, Saima & Sultana, Sobia & Hammouch, Zakia & Jarad, Fahd & Hamed, Y.S., 2021. "Novel aspects of discrete dynamical type inequalities within fractional operators having generalized ℏ-discrete Mittag-Leffler kernels and application," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    15. Suwan, Iyad & Abdeljawad, Thabet & Jarad, Fahd, 2018. "Monotonicity analysis for nabla h-discrete fractional Atangana–Baleanu differences," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 50-59.
    16. Qiushuang Wang & Run Xu, 2022. "On Hilfer Generalized Proportional Nabla Fractional Difference Operators," Mathematics, MDPI, vol. 10(15), pages 1-16, July.
    17. Chen, Wei-Wei & Li, Hong-Li, 2024. "Complete synchronization of delayed discrete-time fractional-order competitive neural networks," Applied Mathematics and Computation, Elsevier, vol. 479(C).
    18. Yuan, Shilei & Wang, Yantao & Zhang, Xian & Wang, Xin, 2024. "H∞ anti-synchronization of switching inertial neural networks with leakage delays and mixed time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 619-647.
    19. Zhang, Hai & Cheng, Yuhong & Zhang, Hongmei & Zhang, Weiwei & Cao, Jinde, 2022. "Hybrid control design for Mittag-Leffler projective synchronization on FOQVNNs with multiple mixed delays and impulsive effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 341-357.
    20. Pshtiwan Othman Mohammed & Thabet Abdeljawad & Faraidun Kadir Hamasalh, 2021. "On Riemann—Liouville and Caputo Fractional Forward Difference Monotonicity Analysis," Mathematics, MDPI, vol. 9(11), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:226:y:2024:i:c:p:413-437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.