IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v298y2017icp296-309.html
   My bibliography  Save this article

Stability analysis of fractional-order complex-valued neural networks with both leakage and discrete delays

Author

Listed:
  • Zhang, Lei
  • Song, Qiankun
  • Zhao, Zhenjiang

Abstract

In this paper, the problem of uniform stability for fractional-order complex-valued neural networks with both leakage and discrete delays is considered. Base on the contracting mapping principle, a sufficient condition is proposed for the existence and uniqueness of the equilibrium point of the addressed neural networks. By employing analysis technique, some delay-dependent criteria are established for checking the global uniform stability of the fractional-order complex-valued neural networks. Two numerical examples are presented to demonstrate the validity and feasibility of the proposed results.

Suggested Citation

  • Zhang, Lei & Song, Qiankun & Zhao, Zhenjiang, 2017. "Stability analysis of fractional-order complex-valued neural networks with both leakage and discrete delays," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 296-309.
  • Handle: RePEc:eee:apmaco:v:298:y:2017:i:c:p:296-309
    DOI: 10.1016/j.amc.2016.11.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300316306956
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.11.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Yuji, 2016. "On piecewise continuous solutions of higher order impulsive fractional differential equations and applications," Applied Mathematics and Computation, Elsevier, vol. 287, pages 38-49.
    2. Zeng, Xu & Li, Chuandong & Huang, Tingwen & He, Xing, 2015. "Stability analysis of complex-valued impulsive systems with time delay," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 75-82.
    3. Ji, Meng-Di & He, Yong & Wu, Min & Zhang, Chuan-Ke, 2015. "Further results on exponential stability of neural networks with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 175-182.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tu, Zhengwen & Ding, Nan & Li, Liangliang & Feng, Yuming & Zou, Limin & Zhang, Wei, 2017. "Adaptive synchronization of memristive neural networks with time-varying delays and reaction–diffusion term," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 118-128.
    2. Zhixin Zhang & Yufeng Zhang & Jia-Bao Liu & Jiang Wei, 2019. "Global Asymptotical Stability Analysis for Fractional Neural Networks with Time-Varying Delays," Mathematics, MDPI, vol. 7(2), pages 1-8, February.
    3. Xu, Quan & Xu, Xiaohui & Zhuang, Shengxian & Xiao, Jixue & Song, Chunhua & Che, Chang, 2018. "New complex projective synchronization strategies for drive-response networks with fractional complex-variable dynamics," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 552-566.
    4. Yuan, Jun & Zhao, Lingzhi & Huang, Chengdai & Xiao, Min, 2019. "Novel results on bifurcation for a fractional-order complex-valued neural network with leakage delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 868-883.
    5. Zhang, Yuting & Yu, Yongguang & Cui, Xueli, 2018. "Dynamical behaviors analysis of memristor-based fractional-order complex-valued neural networks with time delay," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 242-258.
    6. Zhang, Jianmei & Wu, Jianwei & Bao, Haibo & Cao, Jinde, 2018. "Synchronization analysis of fractional-order three-neuron BAM neural networks with multiple time delays," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 441-450.
    7. Yang, Xujun & Li, Chuandong & Huang, Tingwen & Song, Qiankun & Huang, Junjian, 2018. "Synchronization of fractional-order memristor-based complex-valued neural networks with uncertain parameters and time delays," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 105-123.
    8. Syed Ali, M. & Narayanan, Govindasamy & Shekher, Vineet & Alsulami, Hamed & Saeed, Tareq, 2020. "Dynamic stability analysis of stochastic fractional-order memristor fuzzy BAM neural networks with delay and leakage terms," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    9. Mo, Lipo & Yuan, Xiaolin & Yu, Yongguang, 2018. "Target-encirclement control of fractional-order multi-agent systems with a leader," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 479-491.
    10. Jin-E Zhang, 2017. "Multisynchronization for Coupled Multistable Fractional-Order Neural Networks via Impulsive Control," Complexity, Hindawi, vol. 2017, pages 1-10, August.
    11. Călin-Adrian Popa & Eva Kaslik, 2020. "Finite-Time Mittag–Leffler Synchronization of Neutral-Type Fractional-Order Neural Networks with Leakage Delay and Time-Varying Delays," Mathematics, MDPI, vol. 8(7), pages 1-17, July.
    12. Panda, Sumati Kumari & Nagy, A.M. & Vijayakumar, Velusamy & Hazarika, Bipan, 2023. "Stability analysis for complex-valued neural networks with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    13. Duan, Lian & Shi, Min & Huang, Chuangxia & Fang, Xianwen, 2021. "Synchronization in finite-/fixed-time of delayed diffusive complex-valued neural networks with discontinuous activations," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    14. Jinman He & Fangqi Chen & Qinsheng Bi, 2019. "Quasi-Matrix and Quasi-Inverse-Matrix Projective Synchronization for Delayed and Disturbed Fractional Order Neural Network," Complexity, Hindawi, vol. 2019, pages 1-15, April.
    15. Hu, Binxin & Song, Qiankun & Zhao, Zhenjiang, 2020. "Robust state estimation for fractional-order complex-valued delayed neural networks with interval parameter uncertainties: LMI approach," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    16. Pahnehkolaei, Seyed Mehdi Abedi & Alfi, Alireza & Machado, J.A. Tenreiro, 2019. "Delay independent robust stability analysis of delayed fractional quaternion-valued leaky integrator echo state neural networks with QUAD condition," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 278-293.
    17. Zhang, Weiwei & Zhang, Hai & Cao, Jinde & Zhang, Hongmei & Chen, Dingyuan, 2020. "Synchronization of delayed fractional-order complex-valued neural networks with leakage delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    18. Zhang, Yanlin & Deng, Shengfu, 2019. "Finite-time projective synchronization of fractional-order complex-valued memristor-based neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 176-190.
    19. Shi, Yanchao & Cao, Jinde & Chen, Guanrong, 2017. "Exponential stability of complex-valued memristor-based neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 222-234.
    20. Yang, Zhanying & Zhang, Jie & Zhang, Zhihui & Mei, Jun, 2023. "An improved criterion on finite-time stability for fractional-order fuzzy cellular neural networks involving leakage and discrete delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 910-925.
    21. Tu, Zhengwen & Zhao, Yongxiang & Ding, Nan & Feng, Yuming & Zhang, Wei, 2019. "Stability analysis of quaternion-valued neural networks with both discrete and distributed delays," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 342-353.
    22. Yu Yao & Guodong Zhang & Yan Li, 2023. "Fixed/Preassigned-Time Stabilization for Complex-Valued Inertial Neural Networks with Distributed Delays: A Non-Separation Approach," Mathematics, MDPI, vol. 11(10), pages 1-17, May.
    23. Zhang, Hai & Ye, Miaolin & Ye, Renyu & Cao, Jinde, 2018. "Synchronization stability of Riemann–Liouville fractional delay-coupled complex neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 155-165.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoud, Gamal M. & Arafa, Ayman A. & Abed-Elhameed, Tarek M. & Mahmoud, Emad E., 2017. "Chaos control of integer and fractional orders of chaotic Burke–Shaw system using time delayed feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 680-692.
    2. Zhang, Chuan-Ke & He, Yong & Jiang, Lin & Lin, Wen-Juan & Wu, Min, 2017. "Delay-dependent stability analysis of neural networks with time-varying delay: A generalized free-weighting-matrix approach," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 102-120.
    3. Li, Xiaodi & Shen, Jianhua & Rakkiyappan, R., 2018. "Persistent impulsive effects on stability of functional differential equations with finite or infinite delay," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 14-22.
    4. Yang, Ni & Gao, Ruiyi & Su, Huan, 2022. "Stability of multi-links complex-valued impulsive stochastic systems with Markovian switching and multiple delays," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    5. Chen, Xiaofeng & Zhao, Zhenjiang & Song, Qiankun & Hu, Jin, 2017. "Multistability of complex-valued neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 18-35.
    6. Shao, Hanyong & Li, Huanhuan & Zhu, Chuanjie, 2017. "New stability results for delayed neural networks," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 324-334.
    7. Sun, Yonghui & Li, Ning & Shen, Mouquan & Wei, Zhinong & Sun, Guoqiang, 2018. "Robust H∞ control of uncertain linear system with interval time-varying delays by using Wirtinger inequality," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 1-11.
    8. Wang, Pengfei & Zou, Wenqing & Su, Huan, 2019. "Stability of complex-valued impulsive stochastic functional differential equations on networks with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 338-354.
    9. Li, Xiaodi & Deng, Feiqi, 2017. "Razumikhin method for impulsive functional differential equations of neutral type," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 41-49.
    10. Kumar, Ankit & Das, Subir & Yadav, Vijay K. & Rajeev,, 2021. "Global quasi-synchronization of complex-valued recurrent neural networks with time-varying delay and interaction terms," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    11. Shi, Yanchao & Cao, Jinde & Chen, Guanrong, 2017. "Exponential stability of complex-valued memristor-based neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 222-234.
    12. Long, Fei & Zhang, Chuan-Ke & He, Yong & Jiang, Lin & Wang, Qing-Guo & Wu, Min, 2018. "Stability analysis of Lur’e systems with additive delay components via a relaxed matrix inequality," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 224-242.
    13. Chang, Xu-Kang & He, Yong & Gao, Zhen-Man, 2023. "Exponential stability of neural networks with a time-varying delay via a cubic function negative-determination lemma," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    14. Wang, Chen-Rui & He, Yong & Lin, Wen-Juan, 2021. "Stability analysis of generalized neural networks with fast-varying delay via a relaxed negative-determination quadratic function method," Applied Mathematics and Computation, Elsevier, vol. 391(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:298:y:2017:i:c:p:296-309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.