IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i11p1291-d568838.html
   My bibliography  Save this article

Novel Criteria of Stability for Delayed Memristive Quaternionic Neural Networks: Directly Quaternionic Method

Author

Listed:
  • Jie Pan

    (Department of Applied Mathematics, Sichuan Agricultural University, Chengdu 611130, China)

  • Lianglin Xiong

    (School of Mathematics and Computer Science, Yunnan Minzu University, Kunming 650500, China)

Abstract

In this paper, we fixate on the stability of varying-time delayed memristive quaternionic neural networks (MQNNs). With the help of the closure of the convex hull of a set the theory of differential inclusion, MQNN are transformed into variable coefficient continuous quaternionic neural networks (QNNs). The existence and uniqueness of the equilibrium solution (ES) for MQNN are concluded by exploiting the fixed-point theorem. Then a derivative formula of the quaternionic function’s norm is received. By utilizing the formula, the M -matrix theory, and the inequality techniques, some algebraic standards are gained to affirm the global exponential stability (GES) of the ES for the MQNN. Notably, compared to the existing work on QNN, our direct quaternionic method operates QNN as a whole and markedly reduces computing complexity and the gained results are more apt to be verified. The two numerical simulation instances are provided to evidence the merits of the theoretical results.

Suggested Citation

  • Jie Pan & Lianglin Xiong, 2021. "Novel Criteria of Stability for Delayed Memristive Quaternionic Neural Networks: Directly Quaternionic Method," Mathematics, MDPI, vol. 9(11), pages 1-14, June.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:11:p:1291-:d:568838
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/11/1291/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/11/1291/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Syed Ali & S. Saravanan & Quanxin Zhu, 2017. "Finite-time stability of neutral-type neural networks with random time-varying delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(15), pages 3279-3295, November.
    2. Tu, Zhengwen & Zhao, Yongxiang & Ding, Nan & Feng, Yuming & Zhang, Wei, 2019. "Stability analysis of quaternion-valued neural networks with both discrete and distributed delays," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 342-353.
    3. Guo, Runan & Zhang, Ziye & Liu, Xiaoping & Lin, Chong, 2017. "Existence, uniqueness, and exponential stability analysis for complex-valued memristor-based BAM neural networks with time delays," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 100-117.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Usa Humphries & Grienggrai Rajchakit & Pramet Kaewmesri & Pharunyou Chanthorn & Ramalingam Sriraman & Rajendran Samidurai & Chee Peng Lim, 2020. "Stochastic Memristive Quaternion-Valued Neural Networks with Time Delays: An Analysis on Mean Square Exponential Input-to-State Stability," Mathematics, MDPI, vol. 8(5), pages 1-26, May.
    2. Grienggrai Rajchakit & Pharunyou Chanthorn & Pramet Kaewmesri & Ramalingam Sriraman & Chee Peng Lim, 2020. "Global Mittag–Leffler Stability and Stabilization Analysis of Fractional-Order Quaternion-Valued Memristive Neural Networks," Mathematics, MDPI, vol. 8(3), pages 1-29, March.
    3. Zhang, Zhengqiu & Yang, Zhen, 2023. "Asymptotic stability for quaternion-valued fuzzy BAM neural networks via integral inequality approach," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    4. Wang, Chen & Zhang, Hai & Ye, Renyu & Zhang, Weiwei & Zhang, Hongmei, 2023. "Finite time passivity analysis for Caputo fractional BAM reaction–diffusion delayed neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 424-443.
    5. Pan, Jie & Pan, Zhaoya, 2021. "Novel robust stability criteria for uncertain parameter quaternionic neural networks with mixed delays: Whole quaternionic method," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    6. Shan, Yaonan & She, Kun & Zhong, Shouming & Zhong, Qishui & Shi, Kaibo & Zhao, Can, 2018. "Exponential stability and extended dissipativity criteria for generalized discrete-time neural networks with additive time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 145-168.
    7. Zhen Yang & Zhengqiu Zhang, 2022. "Finite-Time Synchronization Analysis for BAM Neural Networks with Time-Varying Delays by Applying the Maximum-Value Approach with New Inequalities," Mathematics, MDPI, vol. 10(5), pages 1-16, March.
    8. Zhang, Weiwei & Sha, Chunlin & Cao, Jinde & Wang, Guanglan & Wang, Yuan, 2021. "Adaptive quaternion projective synchronization of fractional order delayed neural networks in quaternion field," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    9. Baluni, Sapna & Sehgal, Ishani & Yadav, Vijay K. & Das, Subir, 2024. "Exponential synchronization of a class of quaternion-valued neural network with time-varying delays: A Matrix Measure Approach," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    10. Jinlong Shu & Lianglin Xiong & Tao Wu & Zixin Liu, 2019. "Stability Analysis of Quaternion-Valued Neutral-Type Neural Networks with Time-Varying Delay," Mathematics, MDPI, vol. 7(1), pages 1-23, January.
    11. Chang, Wenting & Zhu, Song & Li, Jinyu & Sun, Kaili, 2018. "Global Mittag–Leffler stabilization of fractional-order complex-valued memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 346-362.
    12. Rajchakit, G. & Sriraman, R. & Lim, C.P. & Unyong, B., 2022. "Existence, uniqueness and global stability of Clifford-valued neutral-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 508-527.
    13. Tu, Zhengwen & Yang, Xinsong & Wang, Liangwei & Ding, Nan, 2019. "Stability and stabilization of quaternion-valued neural networks with uncertain time-delayed impulses: Direct quaternion method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    14. Rajchakit, G. & Sriraman, R. & Vignesh, P. & Lim, C.P., 2021. "Impulsive effects on Clifford-valued neural networks with time-varying delays: An asymptotic stability analysis," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    15. Zhang, Dian & Cheng, Jun & Ki Ahn, Choon & Ni, Hongjie, 2019. "A flexible terminal approach to stochastic stability and stabilization of continuous-time semi-Markovian jump systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 191-205.
    16. Grienggrai Rajchakit & Ramalingam Sriraman & Chee Peng Lim & Panu Sam-ang & Porpattama Hammachukiattikul, 2021. "Synchronization in Finite-Time Analysis of Clifford-Valued Neural Networks with Finite-Time Distributed Delays," Mathematics, MDPI, vol. 9(11), pages 1-18, May.
    17. Shu, Jinlong & Wu, Baowei & Xiong, Lianglin & Wu, Tao & Zhang, Haiyang, 2021. "Stochastic stabilization of Markov jump quaternion-valued neural network using sampled-data control," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    18. Li, Donghua & Zhang, Zhengqiu & Zhang, Xiaoluan, 2020. "Periodic solutions of discrete-time Quaternion-valued BAM neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    19. Wei, Xiaofeng & Zhang, Ziye & Lin, Chong & Chen, Jian, 2021. "Synchronization and anti-synchronization for complex-valued inertial neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    20. Xie, Wenqian & Zhu, Hong & Zhong, Shouming & Zhang, Dian & Shi, Kaibo & Cheng, Jun, 2018. "Extended dissipative estimator design for uncertain switched delayed neural networks via a novel triple integral inequality," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 82-102.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:11:p:1291-:d:568838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.