IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v298y2017icp368-382.html
   My bibliography  Save this article

Event-triggered networked H∞ control of discrete-time nonlinear singular systems

Author

Listed:
  • Xu, Qiyi
  • Zhang, Yijun
  • He, Wangli
  • Xiao, Shunyuan

Abstract

This paper is concerned with H∞ controller design for a class of discrete-time nonlinear singular system which is controlled over a communication network. The network-induced delay is considered, and its distribution characteristic is described by a Bernoulli stochastic variable. A novel event-triggered control scheme is proposed in order to save the limited network communication bandwidth. Based on the Lyapunov–Kravoskii stability theory, a delay-distribution-dependent criterion is derived which guarantees the closed-loop networked discrete-time nonlinear singular system is regular, causal, and stable with a certain H∞ performance index. A co-design method for the H∞ controller and the event-triggered scheme is presented by using the singular value decomposition technology. An numerical example is given to illustrate the effectiveness of the proposed method.

Suggested Citation

  • Xu, Qiyi & Zhang, Yijun & He, Wangli & Xiao, Shunyuan, 2017. "Event-triggered networked H∞ control of discrete-time nonlinear singular systems," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 368-382.
  • Handle: RePEc:eee:apmaco:v:298:y:2017:i:c:p:368-382
    DOI: 10.1016/j.amc.2016.11.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300316306786
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.11.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Zhiguang & Li, Wenxing & Lam, James, 2015. "New admissibility analysis for discrete singular systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 1058-1066.
    2. Shao, Hanyong & Zhang, Zhengqiang, 2015. "Delay-dependent state feedback stabilization for a networked control model with two additive input delays," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 748-758.
    3. Guinaldo, M. & Sánchez, J. & Dormido, S., 2016. "Distributed adaptive control of linear multi-agent systems with event-triggered communications," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 195-207.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sivaranjani, K. & Rakkiyappan, R. & Cao, Jinde & Alsaedi, Ahmed, 2017. "Synchronization of nonlinear singularly perturbed complex networks with uncertain inner coupling via event triggered control," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 283-299.
    2. Pradeep, C. & Cao, Yang & Murugesu, R. & Rakkiyappan, R., 2019. "An event-triggered synchronization of semi-Markov jump neural networks with time-varying delays based on generalized free-weighting-matrix approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 41-56.
    3. Liu, Yanhong & Zhi, Huimin & Wei, Jumei & Zhu, Xunlin & Zhu, Quanxin, 2020. "Event-triggered control for linear continuous switched singular systems," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    4. Wu, Kai-Ning & Sun, Han-Xiao & Yang, Baoqing & Lim, Cheng-Chew, 2018. "Finite-time boundary control for delay reaction–diffusion systems," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 52-63.
    5. Liu, Bin & Yang, Meng & Xu, Bo & Zhang, Guohua, 2021. "Exponential stabilization of continuous-time dynamical systems via time and event triggered aperiodic intermittent control," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    6. Zuo, Zhiqiang & Xie, Pengfei & Wang, Yijing, 2020. "Output-based dynamic event-triggering control for sensor saturated systems with external disturbance," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    7. Zhang, Ruimei & Zeng, Deqiang & Zhong, Shouming & Yu, Yongbin, 2017. "Event-triggered sampling control for stability and stabilization of memristive neural networks with communication delays," Applied Mathematics and Computation, Elsevier, vol. 310(C), pages 57-74.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xin & Su, Housheng, 2019. "Consensus of hybrid multi-agent systems by event-triggered/self-triggered strategy," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 490-501.
    2. Chen, Guoliang & Xia, Jianwei & Zhuang, Guangming & Zhao, Junsheng, 2018. "Improved delay-dependent stabilization for a class of networked control systems with nonlinear perturbations and two delay components," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 1-17.
    3. Houssem Jerbi & Mourad Kchaou & Attia Boudjemline & Mohamed Amin Regaieg & Sondes Ben Aoun & Ahmed Lakhdar Kouzou, 2021. "H ∞ and Passive Fuzzy Control for Non-Linear Descriptor Systems with Time-Varying Delay and Sensor Faults," Mathematics, MDPI, vol. 9(18), pages 1-25, September.
    4. Fu, Lei & Ma, Yuechao, 2016. "Passive control for singular time-delay system with actuator saturation," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 181-193.
    5. Shao, Hanyong & Li, Huanhuan & Zhu, Chuanjie, 2017. "New stability results for delayed neural networks," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 324-334.
    6. Hu, Yue & Kwon, Oh-Min & Cai, Chenxiao & Kim, Yeong-Jae, 2024. "Output feedback H∞ control for discrete time singularly perturbed systems with Markov lossy network: The round-robin-like protocol case," Applied Mathematics and Computation, Elsevier, vol. 462(C).
    7. Gao, Xianwen & He, Hangfeng & Qi, Wenhai, 2017. "Admissibility analysis for discrete-time singular Markov jump systems with asynchronous switching," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 431-441.
    8. Sun, Yonghui & Li, Ning & Shen, Mouquan & Wei, Zhinong & Sun, Guoqiang, 2018. "Robust H∞ control of uncertain linear system with interval time-varying delays by using Wirtinger inequality," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 1-11.
    9. Chen, Jian & Lin, Chong & Chen, Bing & Wang, Qing-Guo, 2017. "Mixed H∞ and passive control for singular systems with time delay via static output feedback," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 244-253.
    10. Tan, Yushun & Fei, Shumin & Liu, Jinliang & Zhang, Dan, 2019. "Asynchronous adaptive event-triggered tracking control for multi-agent systems with stochastic actuator faults," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 482-496.
    11. Liu, Guobao & Xu, Shengyuan & Wei, Yunliang & Qi, Zhidong & Zhang, Zhengqiang, 2018. "New insight into reachable set estimation for uncertain singular time-delay systems," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 769-780.
    12. Li, Lingchun & Shen, Mouquan & Zhang, Guangming & Yan, Shen, 2017. "H∞ control of Markov jump systems with time-varying delay and incomplete transition probabilities," Applied Mathematics and Computation, Elsevier, vol. 301(C), pages 95-106.
    13. Xia, Weifeng & Xu, Shengyuan & Lu, Junwei & Li, Yongmin & Chu, Yuming & Zhang, Zhengqiang, 2021. "Event-triggered filtering for discrete-time Markovian jump systems with additive time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    14. Long, Shaohua & Wu, Yunlong & Zhong, Shouming & Zhang, Dian, 2018. "Stability analysis for a class of neutral type singular systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 113-131.
    15. Wang, Yingchun & Zheng, Yu & Xie, Xiangpeng & Yang, Jun, 2020. "An improved reduction method based networked control against false data injection attacks and stochastic input delay," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    16. Wu, Li-Bing & Wang, Heng & He, Xi-Qin & Zhang, Da-Qing, 2018. "Decentralized adaptive fuzzy tracking control for a class of uncertain large-scale systems with actuator nonlinearities," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 390-405.
    17. Wencheng Zou & Zhengrong Xiang, 2017. "Event-triggered distributed containment control of heterogeneous linear multi-agent systems by an output regulation approach," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(10), pages 2041-2054, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:298:y:2017:i:c:p:368-382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.