IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v155y2019icp41-56.html
   My bibliography  Save this article

An event-triggered synchronization of semi-Markov jump neural networks with time-varying delays based on generalized free-weighting-matrix approach

Author

Listed:
  • Pradeep, C.
  • Cao, Yang
  • Murugesu, R.
  • Rakkiyappan, R.

Abstract

In this paper, synchronization results for semi-Markovian jump neural networks with time-varying delays are investigated based on the event-triggered control scheme. With the construction of suitable Lyapunov–Krasovskii functional (LKF), novel synchronization criteria for delayed semi-Markovian jump neural networks are established in the form of linear matrix inequalities (LMIs). Rather, a general free-weighting matrix approach, which is proven to produce less conservative results than the existing methods, is employed to estimate the single integral term. The desired synchronization is achieved by solving the obtained set of LMIs. Eventually, numerical examples are proposed to show the validity of the proposed approach.

Suggested Citation

  • Pradeep, C. & Cao, Yang & Murugesu, R. & Rakkiyappan, R., 2019. "An event-triggered synchronization of semi-Markov jump neural networks with time-varying delays based on generalized free-weighting-matrix approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 41-56.
  • Handle: RePEc:eee:matcom:v:155:y:2019:i:c:p:41-56
    DOI: 10.1016/j.matcom.2017.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475417303555
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2017.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Jiamu & Dong, Hailing & Feng, Jianwen, 2017. "Event-triggered communication for synchronization of Markovian jump delayed complex networks with partially unknown transition rates," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 617-629.
    2. Li, Xiaofei & Ding, Deng, 2017. "Mean square exponential stability of stochastic Hopfield neural networks with mixed delays," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 88-96.
    3. Kundu, Amitava & Das, Pritha & Roy, A.B., 2016. "Stability, bifurcations and synchronization in a delayed neural network model of n-identical neurons," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 121(C), pages 12-33.
    4. Xu, Qiyi & Zhang, Yijun & He, Wangli & Xiao, Shunyuan, 2017. "Event-triggered networked H∞ control of discrete-time nonlinear singular systems," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 368-382.
    5. Zhou, Tiejun & Wang, Min & Li, Chen, 2015. "Almost periodic solution for multidirectional associative memory neural network with distributed delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 107(C), pages 52-60.
    6. Zhou, Qi & Yao, Deyin & Wang, Jiahui & Wu, Chengwei, 2016. "Robust control of uncertain semi-Markovian jump systems using sliding mode control method," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 72-87.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tai, Weipeng & Zuo, Dandan & Xuan, Zuxing & Zhou, Jianping & Wang, Zhen, 2021. "Non-fragile L2−L∞ filtering for a class of switched neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 629-645.
    2. Zhang, Hongmei & Cao, Jinde & Xiong, Lianglin, 2019. "Novel synchronization conditions for time-varying delayed Lur’e system with parametric uncertainty," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 224-236.
    3. Liu, Yan & Wang, Junpu, 2021. "Synchronization of coupled systems via intermittent event-triggered control: Quaternion case," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    4. Otkel, Madina & Ganesan, Soundararajan & Rajan, Rakkiyappan & Kashkynbayev, Ardak, 2024. "Finite-time/fixed-time synchronization of memristive shunting inhibitory cellular neural networks via sliding mode control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 222(C), pages 252-263.
    5. Song, Xingxing & Lu, Hongqian & Xu, Yao & Zhou, Wuneng, 2022. "H∞ synchronization of semi-Markovian jump neural networks with random sensor nonlinearities via adaptive event-triggered output feedback control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 1-19.
    6. Li, Liangchen & Xu, Rui & Lin, Jiazhe, 2020. "Lagrange stability for uncertain memristive neural networks with Lévy noise and leakage delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    7. Liu, Jixin & Song, Shimin & Jiang, Haijun & Li, Jiarong & Liu, Xiaolin, 2020. "New results of projective synchronization for memristor-based coupled neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    8. Wang, Yao & Guo, Jun & Liu, Guobao & Lu, Junwei & Li, Fangyuan, 2021. "Finite-time sampled-data synchronization for uncertain neutral-type semi-Markovian jump neural networks with mixed time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    9. Guo, Beibei & Xiao, Yu & Zhang, Chiping & Zhao, Yong, 2020. "Graph theory-based adaptive intermittent synchronization for stochastic delayed complex networks with semi-Markov jump," Applied Mathematics and Computation, Elsevier, vol. 366(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ruimei & Zeng, Deqiang & Zhong, Shouming & Yu, Yongbin, 2017. "Event-triggered sampling control for stability and stabilization of memristive neural networks with communication delays," Applied Mathematics and Computation, Elsevier, vol. 310(C), pages 57-74.
    2. Nguyen, Ngoc Hoai An & Kim, Sung Hyun, 2021. "Asynchronous dissipative control design for semi-Markovian jump systems with uncertain probability distribution functions of sojourn-time," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    3. Liu, Shouqiang & Yu, Mengjing & Li, Miao & Xu, Qingzhen, 2019. "The research of virtual face based on Deep Convolutional Generative Adversarial Networks using TensorFlow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 667-680.
    4. Sivaranjani, K. & Rakkiyappan, R. & Cao, Jinde & Alsaedi, Ahmed, 2017. "Synchronization of nonlinear singularly perturbed complex networks with uncertain inner coupling via event triggered control," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 283-299.
    5. Wu, Kai-Ning & Sun, Han-Xiao & Yang, Baoqing & Lim, Cheng-Chew, 2018. "Finite-time boundary control for delay reaction–diffusion systems," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 52-63.
    6. Fei Wang & Zhaowen Zheng & Yongqing Yang, 2019. "Synchronization of Complex Dynamical Networks with Hybrid Time Delay under Event-Triggered Control: The Threshold Function Method," Complexity, Hindawi, vol. 2019, pages 1-17, December.
    7. Pharunyou Chanthorn & Grienggrai Rajchakit & Sriraman Ramalingam & Chee Peng Lim & Raja Ramachandran, 2020. "Robust Dissipativity Analysis of Hopfield-Type Complex-Valued Neural Networks with Time-Varying Delays and Linear Fractional Uncertainties," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    8. Wu, Tao & Cao, Jinde & Xiong, Lianglin & Zhang, Haiyang & Shu, Jinlong, 2022. "Sampled-data synchronization criteria for Markovian jumping neural networks with additive time-varying delays using new techniques," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    9. Wang, Weiping & Jia, Xiao & Luo, Xiong & Kurths, Jürgen & Yuan, Manman, 2019. "Fixed-time synchronization control of memristive MAM neural networks with mixed delays and application in chaotic secure communication," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 85-96.
    10. Zuo, Zhiqiang & Xie, Pengfei & Wang, Yijing, 2020. "Output-based dynamic event-triggering control for sensor saturated systems with external disturbance," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    11. Pharunyou Chanthorn & Grienggrai Rajchakit & Jenjira Thipcha & Chanikan Emharuethai & Ramalingam Sriraman & Chee Peng Lim & Raja Ramachandran, 2020. "Robust Stability of Complex-Valued Stochastic Neural Networks with Time-Varying Delays and Parameter Uncertainties," Mathematics, MDPI, vol. 8(5), pages 1-19, May.
    12. Liang, Hongjing & Zhou, Yu & Ma, Hui & Wu, Qinghui & Yu, Zhandong, 2018. "Distributed-observer-based output synchronization for heterogeneous double-integral networks," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 535-544.
    13. Kaviarasan, Boomipalagan & Kwon, Oh-Min & Park, Myeong Jin & Sakthivel, Rathinasamy, 2023. "Reduced-order filtering for semi-Markovian jump systems against randomly occurring false data injection attacks," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    14. Ran, Suzhen & Xue, Yanmei & Zheng, Bo-Chao & Wang, Zhenyou, 2017. "Quantized feedback fuzzy sliding mode control design via memory-based strategy," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 283-295.
    15. Liang, Kun & Dai, Mingcheng & Shen, Hao & Wang, Jing & Wang, Zhen & Chen, Bo, 2018. "L2−L∞ synchronization for singularly perturbed complex networks with semi-Markov jump topology," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 450-462.
    16. Wang, Guoliang & Cai, Hongyang & Zhang, Qingling & Yang, Chunyu, 2017. "Stabilization of stochastic delay systems via a disordered controller," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 98-109.
    17. Hongqian Lu & Chaoqun Guo & Yue Hu & Wuneng Zhou, 2019. "Event-Triggered Stability Analysis of Semi-Markovian Jump Networked Control System with Actuator Faults and Time-Varying Delay via Bessel–Legendre Inequalities," Complexity, Hindawi, vol. 2019, pages 1-16, October.
    18. Liu, Yanhong & Zhi, Huimin & Wei, Jumei & Zhu, Xunlin & Zhu, Quanxin, 2020. "Event-triggered control for linear continuous switched singular systems," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    19. Yao, Xiuming & Lian, Yue & Park, Ju H., 2019. "Disturbance-observer-based event-triggered control for semi-Markovian jump nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    20. Yongkun Li & Xiaofang Meng & Yuan Ye, 2018. "Almost Periodic Synchronization for Quaternion-Valued Neural Networks with Time-Varying Delays," Complexity, Hindawi, vol. 2018, pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:155:y:2019:i:c:p:41-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.