IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i18p2203-d631448.html
   My bibliography  Save this article

H ∞ and Passive Fuzzy Control for Non-Linear Descriptor Systems with Time-Varying Delay and Sensor Faults

Author

Listed:
  • Houssem Jerbi

    (Department of Industrial Engineering, College of Engineering, University of Hail, Hail 2440, Saudi Arabia)

  • Mourad Kchaou

    (Department of Electrical Engineering, College of Engineering, University of Hail, Hail 2440, Saudi Arabia)

  • Attia Boudjemline

    (Department of Industrial Engineering, College of Engineering, University of Hail, Hail 2440, Saudi Arabia)

  • Mohamed Amin Regaieg

    (Lab-STA, LR11ES50, National School of Engineering of Sfax, University of Sfax, Sfax 3038, Tunisia)

  • Sondes Ben Aoun

    (Department of Computer Engineering, College of Computer Science and Engineering, University of Hail, Hail 2440, Saudi Arabia)

  • Ahmed Lakhdar Kouzou

    (Faculty of Electrical and Control Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland)

Abstract

In this paper, the problem of reliable control design with mixed H ∞ /passive performance is discussed for a class of Takagi–Sugeno TS fuzzy descriptor systems with time-varying delay, sensor failure, and randomly occurred non-linearity. Based on the Lyapunov theory, firstly, a less conservative admissible criterion is established by combining the delay decomposition and reciprocally convex approaches. Then, the attention is focused on the design of a reliable static output feedback (SOF) controller with mixed H ∞ /passive performance requirements. The key merit of the paper is to propose a simple method to design such a controller since the system output is subject to probabilistic missing data and noise. Using the output vector as a state component, an augmented model is introduced, and sufficient conditions are derived to achieve the desired performance of the closed-loop system. In addition, the cone complementarity linearization (CCL) algorithm is provided to calculate the controller gains. At last, three numerical examples, including computer-simulated truck-trailer and ball and beam systems are given to show the efficacy of our proposed approach, compared with existing ones in the literature.

Suggested Citation

  • Houssem Jerbi & Mourad Kchaou & Attia Boudjemline & Mohamed Amin Regaieg & Sondes Ben Aoun & Ahmed Lakhdar Kouzou, 2021. "H ∞ and Passive Fuzzy Control for Non-Linear Descriptor Systems with Time-Varying Delay and Sensor Faults," Mathematics, MDPI, vol. 9(18), pages 1-25, September.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:18:p:2203-:d:631448
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/18/2203/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/18/2203/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pingjing Yang & Yuechao Ma & Fengman Yang & Debin Kong & Lin Wang, 2018. "Passivity control for uncertain singular discrete T–S fuzzy time-delay systems subject to actuator saturation," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(8), pages 1627-1640, June.
    2. Feng, Zhiguang & Li, Wenxing & Lam, James, 2015. "New admissibility analysis for discrete singular systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 1058-1066.
    3. Liu, Yangfan & Ma, Yuechao & Wang, Yanning, 2018. "Reliable finite-time sliding-mode control for singular time-delay system with sensor faults and randomly occurring nonlinearities," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 341-357.
    4. Qunxian Zheng & Youzhu Ling & Lisheng Wei & Hongbin Zhang, 2018. "Mixed H∞ and passive control for linear switched systems via hybrid control approach," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(4), pages 818-832, March.
    5. Chen, Jian & Lin, Chong & Chen, Bing & Wang, Qing-Guo, 2017. "Mixed H∞ and passive control for singular systems with time delay via static output feedback," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 244-253.
    6. Zheng-Guang Wu & Peng Shi & Hongye Su & Jian Chu, 2012. "Delay-dependent stability analysis for discrete-time singular Markovian jump systems with time-varying delay," International Journal of Systems Science, Taylor & Francis Journals, vol. 43(11), pages 2095-2106.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fenghua Chen & Xinguo Qiu & Khalid A. Alattas & Ardashir Mohammadzadeh & Ebrahim Ghaderpour, 2022. "A New Fuzzy Robust Control for Linear Parameter-Varying Systems," Mathematics, MDPI, vol. 10(18), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harshavarthini, S. & Sakthivel, R. & Ma, Yong-Ki & Muslim, M., 2020. "Finite-time resilient fault-tolerant investment policy scheme for chaotic nonlinear finance system," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    2. Harshavarthini, S. & Sakthivel, R. & Kong, F., 2020. "Finite-time synchronization of chaotic coronary artery system with input time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    3. Liu, Guobao & Xu, Shengyuan & Wei, Yunliang & Qi, Zhidong & Zhang, Zhengqiang, 2018. "New insight into reachable set estimation for uncertain singular time-delay systems," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 769-780.
    4. Ren, Junchao & Feng, Lihong & Fu, Jun & Zhuang, Tianyu, 2021. "Admissibility analysis and passive output feedback control for one-sided Lipschitz nonlinear singular Markovian jump systems with uncertainties," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    5. Xu, Qiyi & Zhang, Yijun & He, Wangli & Xiao, Shunyuan, 2017. "Event-triggered networked H∞ control of discrete-time nonlinear singular systems," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 368-382.
    6. Obaid Alshammari & Mourad Kchaou & Houssem Jerbi & Sondess Ben Aoun & Víctor Leiva, 2022. "A Fuzzy Design for a Sliding Mode Observer-Based Control Scheme of Takagi-Sugeno Markov Jump Systems under Imperfect Premise Matching with Bio-Economic and Industrial Applications," Mathematics, MDPI, vol. 10(18), pages 1-28, September.
    7. Sakthivel, R. & Joby, Maya & Wang, Chao & Kaviarasan, B., 2018. "Finite-time fault-tolerant control of neutral systems against actuator saturation and nonlinear actuator faults," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 425-436.
    8. Luo, Jinnan & Tian, Wenhong & Zhong, Shouming & Shi, Kaibo & Chen, Hao & Gu, Xian-Ming & Wang, Wenqin, 2017. "Non-fragile asynchronous H∞ control for uncertain stochastic memory systems with Bernoulli distribution," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 109-128.
    9. Zhang, Zhiming & Zheng, Wei & Lam, H.K. & Wen, Shuhuan & Sun, Fuchun & Xie, Ping, 2020. "Stability analysis and output feedback control for stochastic networked systems with multiple communication delays and nonlinearities using fuzzy control technique," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    10. Fu, Lei & Ma, Yuechao, 2016. "Passive control for singular time-delay system with actuator saturation," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 181-193.
    11. Vijayakumar, M. & Sakthivel, R. & Mohammadzadeh, Ardashir & Karthick, S.A. & Marshal Anthoni, S., 2021. "Proportional integral observer based tracking control design for Markov jump systems," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    12. Y. Y. Wang & P. F. Zhou & Q. B. Wang & D. P. Duan, 2014. "State Estimation and Reliable Control of Singular Markovian Systems with Distributed State Delays and Input Delays," Journal of Optimization Theory and Applications, Springer, vol. 162(1), pages 313-328, July.
    13. Gao, Xianwen & He, Hangfeng & Qi, Wenhai, 2017. "Admissibility analysis for discrete-time singular Markov jump systems with asynchronous switching," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 431-441.
    14. Mourad Kchaou & Houssem Jerbi & Dan Stefanoiu & Dumitru Popescu, 2022. "Quantized Fault-Tolerant Control for Descriptor Systems with Intermittent Actuator Faults, Randomly Occurring Sensor Non-Linearity, and Missing Data," Mathematics, MDPI, vol. 10(11), pages 1-20, May.
    15. Chan, Joseph Chang Lun & Tan, Chee Pin & Trinh, Hieu & Kamal, Md Abdus Samad & Chiew, Yeong Shiong, 2019. "Robust fault reconstruction for a class of non-infinitely observable descriptor systems using two sliding mode observers in cascade," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 78-92.
    16. Ma, Zheng & Song, Jiasheng & Zhou, Jianping, 2022. "Reliable event-based dissipative filter design for discrete-time system with dynamic quantization and sensor fault," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    17. Tao, Ruifeng & Ma, Yuechao & Wang, Chunjiao, 2020. "Stochastic admissibility of singular Markov jump systems with time-delay via sliding mode approach," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    18. Xin-zhuang Dong, 2014. "Admissibility analysis of linear singular systems via a delta operator method," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(11), pages 2366-2375, November.
    19. Zhao, Wenying & Ma, Yuechao & Chen, Aihong & Fu, Lei & Zhang, Yutong, 2019. "Robust sliding mode control for Markovian jump singular systems with randomly changing structure," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 81-96.
    20. Chen, Jian & Lin, Chong & Chen, Bing & Wang, Qing-Guo, 2017. "Mixed H∞ and passive control for singular systems with time delay via static output feedback," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 244-253.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:18:p:2203-:d:631448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.