IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v312y2017icp177-201.html
   My bibliography  Save this article

Spatiotemporal dynamics and spatial pattern in a diffusive intraguild predation model with delay effect

Author

Listed:
  • Han, Renji
  • Dai, Binxiang

Abstract

Based on biological meaning, a kind of diffusive intraguild predation (IGP: resource, IG prey and IG predator) model with delay effect is investigated in this paper. The model has Holling-Type I functional response between resource-IG prey and resource-IG predator; Holling-Type II functional response between IG prey and IG predator. We first give sufficient conditions on the stability of possible nonnegative constant steady-state solutions for the proposed model, which give us a complete picture of the global dynamics. Then we investigate Hopf bifurcation near the unique positive constant steady-state solution by taking delay as bifurcation parameter and derive the Hopf bifurcation threshold. It is shown that the delay can induce three types of bistability (node-node bistability, node-cycle bistability and cycle-cycle bistability), periodic oscillations and irregular oscillations triggering spatiotemporal chaos in the diffusive IGP model. Numerical simulations are performed to illustrate our theoretical results and suggest that delay can even trigger the emergence of self-organised spatiotemporal patterns, which evolve from spiral patterns to irregular spatial patterns via spatiotemporal Hopf bifurcation. In addition, the impact of diffusion on the model’s dynamics under certain time delay are also explored.

Suggested Citation

  • Han, Renji & Dai, Binxiang, 2017. "Spatiotemporal dynamics and spatial pattern in a diffusive intraguild predation model with delay effect," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 177-201.
  • Handle: RePEc:eee:apmaco:v:312:y:2017:i:c:p:177-201
    DOI: 10.1016/j.amc.2017.05.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630031730365X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.05.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Xiaosong & Song, Yongli, 2015. "Stability, Hopf bifurcations and spatial patterns in a delayed diffusive predator–prey model with herd behavior," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 375-391.
    2. Jankovic, Masha & Petrovskii, Sergei & Banerjee, Malay, 2016. "Delay driven spatiotemporal chaos in single species population dynamics models," Theoretical Population Biology, Elsevier, vol. 110(C), pages 51-62.
    3. Zhao, Hongyong & Zhang, Xuebing & Huang, Xuanxuan, 2015. "Hopf bifurcation and spatial patterns of a delayed biological economic system with diffusion," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 462-480.
    4. Shchekinova, Elena Y. & Löder, Martin G.J. & Boersma, Maarten & Wiltshire, Karen H., 2014. "Facilitation of intraguild prey by its intraguild predator in a three-species Lotka–Volterra model," Theoretical Population Biology, Elsevier, vol. 92(C), pages 55-61.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Zeyan & Li, Jianjuan & Liu, Shuying & Zhou, Liuting & Luo, Yang, 2019. "A spatial predator–prey system with non-renewable resources," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 381-391.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gökçe, Aytül & Yazar, Samire & Sekerci, Yadigar, 2022. "Stability of spatial patterns in a diffusive oxygen–plankton model with time lag effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 109-123.
    2. Yang, Ruizhi, 2017. "Bifurcation analysis of a diffusive predator–prey system with Crowley–Martin functional response and delay," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 131-139.
    3. Gökçe, Aytül, 2021. "A mathematical study for chaotic dynamics of dissolved oxygen- phytoplankton interactions under environmental driving factors and time lag," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    4. Gökçe, Aytül & Yazar, Samire & Sekerci, Yadigar, 2020. "Delay induced nonlinear dynamics of oxygen-plankton interactions," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    5. Yang, Ruizhi & Ma, Jian, 2018. "Analysis of a diffusive predator-prey system with anti-predator behaviour and maturation delay," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 128-139.
    6. Tang, Xiaosong, 2022. "Periodic solutions and spatial patterns induced by mixed delays in a diffusive spruce budworm model with Holling II predation function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 420-429.
    7. Lv, Yun-fei & Li, Tongtong & Pei, Yongzhen & Yuan, Rong, 2016. "A complete analysis of the global dynamics of a diffusive predator and toxic prey model," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 182-196.
    8. Jiang, Xiaowei & Chen, Xiangyong & Chi, Ming & Chen, Jie, 2020. "On Hopf bifurcation and control for a delay systems," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    9. Huang, Tousheng & Zhang, Huayong, 2016. "Bifurcation, chaos and pattern formation in a space- and time-discrete predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 92-107.
    10. Liu, Chao & Yu, Longfei & Zhang, Qingling & Li, Yuanke, 2018. "Dynamic analysis of a hybrid bioeconomic plankton system with double time delays and stochastic fluctuations," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 115-137.
    11. Chen, Jianxin & Zhang, Tonghua & Zhou, Yongwu, 2020. "Dynamics of a risk-averse newsvendor model with continuous-time delay in supply chain financing," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 169(C), pages 133-148.
    12. Nosrati, Komeil & Shafiee, Masoud, 2017. "Dynamic analysis of fractional-order singular Holling type-II predator–prey system," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 159-179.
    13. Ghanbari, Behzad & Djilali, Salih, 2020. "Mathematical analysis of a fractional-order predator-prey model with prey social behavior and infection developed in predator population," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    14. Djilali, Salih, 2019. "Impact of prey herd shape on the predator-prey interaction," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 139-148.
    15. Liu, Chao & Wang, Luping & Zhang, Qingling & Li, Yuanke, 2018. "Modeling and dynamical analysis of a triple delayed prey–predator–scavenger system with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1216-1239.
    16. Huang, Chengdai & Cao, Jinde & Xiao, Min & Alsaedi, Ahmed & Alsaadi, Fuad E., 2017. "Controlling bifurcation in a delayed fractional predator–prey system with incommensurate orders," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 293-310.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:312:y:2017:i:c:p:177-201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.