IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v318y2015icp8-18.html
   My bibliography  Save this article

Dynamic analysis of time fractional order phytoplankton–toxic phytoplankton–zooplankton system

Author

Listed:
  • Javidi, Mohammad
  • Ahmad, Bashir

Abstract

In this paper, we study the dynamics of a time fractional order toxic-phytoplankton–phytoplankton–zooplankton system (TPPZS). Routh–Hurwitz criteria is applied to discuss the stability analysis of biologically feasible equilibrium points for the given system in terms of reproduction numbers (associated with ecological as well as disease phenomena). Local stability properties of the toxic-phytoplankton-free equilibrium are also investigated. Numerical simulations are performed for a hypothetical set of parameter values in support of our analytic results.

Suggested Citation

  • Javidi, Mohammad & Ahmad, Bashir, 2015. "Dynamic analysis of time fractional order phytoplankton–toxic phytoplankton–zooplankton system," Ecological Modelling, Elsevier, vol. 318(C), pages 8-18.
  • Handle: RePEc:eee:ecomod:v:318:y:2015:i:c:p:8-18
    DOI: 10.1016/j.ecolmodel.2015.06.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380015002653
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2015.06.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roy, Shovonlal, 2009. "The coevolution of two phytoplankton species on a single resource: Allelopathy as a pseudo-mixotrophy," Theoretical Population Biology, Elsevier, vol. 75(1), pages 68-75.
    2. Yan, Ye & Kou, Chunhai, 2012. "Stability analysis for a fractional differential model of HIV infection of CD4+ T-cells with time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(9), pages 1572-1585.
    3. Ahmed, E. & Elgazzar, A.S., 2007. "On fractional order differential equations model for nonlocal epidemics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 607-614.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Di & Guo Chen & Huihui Pang, 2020. "Coupled Systems of Nonlinear Integer and Fractional Differential Equations with Multi-Point and Multi-Strip Boundary Conditions," Mathematics, MDPI, vol. 8(6), pages 1-21, June.
    2. Ahmed Alsaedi & Bashir Ahmad & Madeaha Alghanmi & Sotiris K. Ntouyas, 2019. "On a Generalized Langevin Type Nonlocal Fractional Integral Multivalued Problem," Mathematics, MDPI, vol. 7(11), pages 1-13, October.
    3. Muthaiah Subramanian & Jehad Alzabut & Mohamed I. Abbas & Chatthai Thaiprayoon & Weerawat Sudsutad, 2022. "Existence of Solutions for Coupled Higher-Order Fractional Integro-Differential Equations with Nonlocal Integral and Multi-Point Boundary Conditions Depending on Lower-Order Fractional Derivatives and," Mathematics, MDPI, vol. 10(11), pages 1-19, May.
    4. Rongwu Lu & Xinhua Wang & Hao Yu & Dan Li, 2018. "Multiparty Evolutionary Game Model in Coal Mine Safety Management and Its Application," Complexity, Hindawi, vol. 2018, pages 1-10, March.
    5. Sekerci, Yadigar & Ozarslan, Ramazan, 2020. "Respiration Effect on Plankton–Oxygen Dynamics in view of non-singular time fractional derivatives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    6. Sekerci, Yadigar & Ozarslan, Ramazan, 2020. "Oxygen-plankton model under the effect of global warming with nonsingular fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    7. Liang, Yuqin & Jia, Yunfeng, 2022. "Stability and Hopf bifurcation of a diffusive plankton model with time-delay and mixed nonlinear functional responses," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    8. Lifan Chen & Xingwang Yu & Sanling Yuan, 2022. "Effects of Random Environmental Perturbation on the Dynamics of a Nutrient–Phytoplankton–Zooplankton Model with Nutrient Recycling," Mathematics, MDPI, vol. 10(20), pages 1-23, October.
    9. Li, Peiluan & Gao, Rong & Xu, Changjin & Li, Ying & Akgül, Ali & Baleanu, Dumitru, 2023. "Dynamics exploration for a fractional-order delayed zooplankton–phytoplankton system," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    10. Agarwal, Ravi P. & Ahmad, Bashir & Garout, Doa’a & Alsaedi, Ahmed, 2017. "Existence results for coupled nonlinear fractional differential equations equipped with nonlocal coupled flux and multi-point boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 149-161.
    11. Sotiris K. Ntouyas & Bashir Ahmad & Jessada Tariboon, 2022. "( k , ψ )-Hilfer Nonlocal Integro-Multi-Point Boundary Value Problems for Fractional Differential Equations and Inclusions," Mathematics, MDPI, vol. 10(15), pages 1-20, July.
    12. Fatmawati, & Khan, Muhammad Altaf & Azizah, Muftiyatul & Windarto, & Ullah, Saif, 2019. "A fractional model for the dynamics of competition between commercial and rural banks in Indonesia," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 32-46.
    13. Bashir Ahmad & Madeaha Alghanmi & Ahmed Alsaedi & Hari M. Srivastava & Sotiris K. Ntouyas, 2019. "The Langevin Equation in Terms of Generalized Liouville–Caputo Derivatives with Nonlocal Boundary Conditions Involving a Generalized Fractional Integral," Mathematics, MDPI, vol. 7(6), pages 1-10, June.
    14. Ahmed Alsaedi & Amjad F. Albideewi & Sotiris K. Ntouyas & Bashir Ahmad, 2020. "On Caputo–Riemann–Liouville Type Fractional Integro-Differential Equations with Multi-Point Sub-Strip Boundary Conditions," Mathematics, MDPI, vol. 8(11), pages 1-14, October.
    15. Bashir Ahmad & Ymnah Alruwaily & Ahmed Alsaedi & Sotiris K. Ntouyas, 2019. "Existence and Stability Results for a Fractional Order Differential Equation with Non-Conjugate Riemann-Stieltjes Integro-Multipoint Boundary Conditions," Mathematics, MDPI, vol. 7(3), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huo, Jingjing & Zhao, Hongyong, 2016. "Dynamical analysis of a fractional SIR model with birth and death on heterogeneous complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 41-56.
    2. Pratap, A. & Raja, R. & Cao, J. & Lim, C.P. & Bagdasar, O., 2019. "Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 241-260.
    3. Mahmoud, Gamal M. & Arafa, Ayman A. & Abed-Elhameed, Tarek M. & Mahmoud, Emad E., 2017. "Chaos control of integer and fractional orders of chaotic Burke–Shaw system using time delayed feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 680-692.
    4. Jiang, Zhichao & Zhang, Tongqian, 2017. "Dynamical analysis of a reaction-diffusion phytoplankton-zooplankton system with delay," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 693-704.
    5. Gafiychuk, V. & Datsko, B. & Meleshko, V., 2008. "Analysis of fractional order Bonhoeffer–van der Pol oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 418-424.
    6. Ricardo Almeida & Agnieszka B. Malinowska & Tatiana Odzijewicz, 2019. "Optimal Leader–Follower Control for the Fractional Opinion Formation Model," Journal of Optimization Theory and Applications, Springer, vol. 182(3), pages 1171-1185, September.
    7. Zu, Chuanjin & Gao, Yanming & Yu, Xiangyang, 2021. "Time fractional evolution of a single quantum state and entangled state," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    8. Zhao, Jingjun & Jiang, Xingzhou & Xu, Yang, 2021. "Generalized Adams method for solving fractional delay differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 401-419.
    9. Owolabi, Kolade M. & Atangana, Abdon, 2019. "Mathematical analysis and computational experiments for an epidemic system with nonlocal and nonsingular derivative," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 41-49.
    10. Hao, Zhaopeng & Fan, Kai & Cao, Wanrong & Sun, Zhizhong, 2016. "A finite difference scheme for semilinear space-fractional diffusion equations with time delay," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 238-254.
    11. A. A. M. Arafa & M. Khalil & A. Sayed, 2019. "A Non-Integer Variable Order Mathematical Model of Human Immunodeficiency Virus and Malaria Coinfection with Time Delay," Complexity, Hindawi, vol. 2019, pages 1-13, March.
    12. Silva, Cristiana J. & Torres, Delfim F.M., 2019. "Stability of a fractional HIV/AIDS model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 164(C), pages 180-190.
    13. Majee, Suvankar & Jana, Soovoojeet & Das, Dhiraj Kumar & Kar, T.K., 2022. "Global dynamics of a fractional-order HFMD model incorporating optimal treatment and stochastic stability," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    14. Chatterjee, Amar Nath & Ahmad, Bashir, 2021. "A fractional-order differential equation model of COVID-19 infection of epithelial cells," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    15. Li, Dongfang & Zhang, Chengjian, 2020. "Long time numerical behaviors of fractional pantograph equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 244-257.
    16. Hai Zhang & Renyu Ye & Jinde Cao & Ahmed Alsaedi, 2017. "Existence and Globally Asymptotic Stability of Equilibrium Solution for Fractional-Order Hybrid BAM Neural Networks with Distributed Delays and Impulses," Complexity, Hindawi, vol. 2017, pages 1-13, September.
    17. Uddin, Md. Jasim & Rana, Sarker Md. Sohel & Işık, Seval & Kangalgil, Figen, 2023. "On the qualitative study of a discrete fractional order prey–predator model with the effects of harvesting on predator population," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    18. Majumdar, Prahlad & Mondal, Bapin & Debnath, Surajit & Ghosh, Uttam, 2022. "Controlling of periodicity and chaos in a three dimensional prey predator model introducing the memory effect," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    19. Ardak Kashkynbayev & Fathalla A. Rihan, 2021. "Dynamics of Fractional-Order Epidemic Models with General Nonlinear Incidence Rate and Time-Delay," Mathematics, MDPI, vol. 9(15), pages 1-16, August.
    20. Liang, Song & Wu, Ranchao & Chen, Liping, 2016. "Adaptive pinning synchronization in fractional-order uncertain complex dynamical networks with delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 49-62.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:318:y:2015:i:c:p:8-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.