IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v194y2022icp109-123.html
   My bibliography  Save this article

Stability of spatial patterns in a diffusive oxygen–plankton model with time lag effect

Author

Listed:
  • Gökçe, Aytül
  • Yazar, Samire
  • Sekerci, Yadigar

Abstract

Although marine ecosystem is a highly complex phenomenon with many non-linearly interacting species, dissolved oxygen and plankton among these have perhaps the most fundamental relationship not only for the protection of marine environment but also for continuation of life on Earth. This paper deals with a generic diffusive model of dissolved oxygen, phytoplankton and zooplankton species, for which constant time delays are incorporated in growth response of phytoplankton and in the gestation time of zooplankton. We mainly focus on the stability analysis of the coexisting states and the existence of Hopf bifurcation through the characteristic equation, where time delay and oxygen production rate are considered as control parameters for all cases. Studying the effect of both time delays on a stable system, we show destabilisation of the system and irregularity in the spatio-temporal dynamical regimes, leading to chaotic oscillations. Although both delay terms have a destabilising effect, our findings indicate that time delay in zooplankton gestation may induce sharp strongly irregular pattern, whereas time delay in phytoplankton growth gives rise to more regular but higher frequency oscillations for oxygen–plankton interactions. The findings of this paper may provide new insights into main environmental issues including global warming and climate change.

Suggested Citation

  • Gökçe, Aytül & Yazar, Samire & Sekerci, Yadigar, 2022. "Stability of spatial patterns in a diffusive oxygen–plankton model with time lag effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 109-123.
  • Handle: RePEc:eee:matcom:v:194:y:2022:i:c:p:109-123
    DOI: 10.1016/j.matcom.2021.11.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847542100402X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.11.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Xiaosong & Song, Yongli, 2015. "Stability, Hopf bifurcations and spatial patterns in a delayed diffusive predator–prey model with herd behavior," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 375-391.
    2. Li, Kai & Wei, Junjie, 2009. "Stability and Hopf bifurcation analysis of a prey–predator system with two delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2606-2613.
    3. Gökçe, Aytül & Yazar, Samire & Sekerci, Yadigar, 2020. "Delay induced nonlinear dynamics of oxygen-plankton interactions," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Iqbal, Naveed & Wu, Ranchao & Mohammed, Wael W., 2021. "Pattern formation induced by fractional cross-diffusion in a 3-species food chain model with harvesting," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 102-119.
    5. Jankovic, Masha & Petrovskii, Sergei & Banerjee, Malay, 2016. "Delay driven spatiotemporal chaos in single species population dynamics models," Theoretical Population Biology, Elsevier, vol. 110(C), pages 51-62.
    6. Li, Wan-Tong & Yan, Xiang-Ping & Zhang, Cun-Hua, 2008. "Stability and Hopf bifurcation for a delayed cooperation diffusion system with Dirichlet boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 227-237.
    7. Chuanjun Dai & Hengguo Yu & Qing Guo & He Liu & Qi Wang & Zengling Ma & Min Zhao, 2019. "Dynamics Induced by Delay in a Nutrient-Phytoplankton Model with Multiple Delays," Complexity, Hindawi, vol. 2019, pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gökçe, Aytül, 2021. "A mathematical study for chaotic dynamics of dissolved oxygen- phytoplankton interactions under environmental driving factors and time lag," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    2. Han, Renji & Dai, Binxiang, 2017. "Spatiotemporal dynamics and spatial pattern in a diffusive intraguild predation model with delay effect," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 177-201.
    3. Dubey, Balram & Sajan, & Kumar, Ankit, 2021. "Stability switching and chaos in a multiple delayed prey–predator model with fear effect and anti-predator behavior," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 164-192.
    4. Jiang, Xiaowei & Chen, Xiangyong & Chi, Ming & Chen, Jie, 2020. "On Hopf bifurcation and control for a delay systems," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    5. Wang, Qiubao & Hu, Zhouyu & Yang, Yanling & Zhang, Congqing & Han, Zikun, 2023. "The impact of memory effect on time-delay logistic systems driven by a class of non-Gaussian noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    6. Fateev, I. & Polezhaev, A., 2024. "Chimera states in a lattice of superdiffusively coupled neurons," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    7. Yang, Ruizhi, 2017. "Bifurcation analysis of a diffusive predator–prey system with Crowley–Martin functional response and delay," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 131-139.
    8. Sudeshna Mondal & Guruprasad Samanta & Manuel De la Sen, 2022. "Dynamics of Oxygen-Plankton Model with Variable Zooplankton Search Rate in Deterministic and Fluctuating Environments," Mathematics, MDPI, vol. 10(10), pages 1-24, May.
    9. He, Xue-Zhong & Li, Kai, 2015. "Profitability of time series momentum," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 140-157.
    10. Karaoglu, Esra & Merdan, Huseyin, 2014. "Hopf bifurcations of a ratio-dependent predator–prey model involving two discrete maturation time delays," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 159-168.
    11. Chen, Jianxin & Zhang, Tonghua & Zhou, Yongwu, 2020. "Dynamics of a risk-averse newsvendor model with continuous-time delay in supply chain financing," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 169(C), pages 133-148.
    12. De Cesare, Luigi & Sportelli, Mario, 2022. "A non-linear approach to Kalecki’s investment cycle," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 57-70.
    13. Zhang, Feifan & Sun, Jiamin & Tian, Wang, 2022. "Spatiotemporal pattern selection in a nontoxic-phytoplankton - toxic-phytoplankton - zooplankton model with toxin avoidance effects," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    14. Han, Renji & Dai, Binxiang, 2017. "Hopf bifurcation in a reaction-diffusive two-species model with nonlocal delay effect and general functional response," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 90-109.
    15. Gökçe, Aytül & Yazar, Samire & Sekerci, Yadigar, 2020. "Delay induced nonlinear dynamics of oxygen-plankton interactions," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    16. Andrei D. Polyanin & Vsevolod G. Sorokin, 2023. "Reductions and Exact Solutions of Nonlinear Wave-Type PDEs with Proportional and More Complex Delays," Mathematics, MDPI, vol. 11(3), pages 1-25, January.
    17. Wang, Jingnan & Shi, Hongbin & Xu, Li & Zang, Lu, 2022. "Hopf bifurcation and chaos of tumor-Lymphatic model with two time delays," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    18. Guo, Qing & Wang, Yi & Dai, Chuanjun & Wang, Lijun & Liu, He & Li, Jianbing & Tiwari, Pankaj Kumar & Zhao, Min, 2023. "Dynamics of a stochastic nutrient–plankton model with regime switching," Ecological Modelling, Elsevier, vol. 477(C).
    19. Wael W. Mohammed & Meshari Alesemi & Sahar Albosaily & Naveed Iqbal & M. El-Morshedy, 2021. "The Exact Solutions of Stochastic Fractional-Space Kuramoto-Sivashinsky Equation by Using ( G ′ G )-Expansion Method," Mathematics, MDPI, vol. 9(21), pages 1-10, October.
    20. Akio Matsumoto & Ferenc Szidarovszky & Hiroyuki Yoshida, 2011. "Dynamics in Linear Cournot Duopolies with Two Time Delays," Computational Economics, Springer;Society for Computational Economics, vol. 38(3), pages 311-327, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:194:y:2022:i:c:p:109-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.