IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v99y2011i1p128-134.html
   My bibliography  Save this article

Long-term growth, water consumption and yield of date palm as a function of salinity

Author

Listed:
  • Tripler, Effi
  • Shani, Uri
  • Mualem, Yechezkel
  • Ben-Gal, Alon

Abstract

Actual measurements of water uptake and use, and the effect of water quality considerations on evapotranspiration (ET), are indispensable for understanding root zone processes and for the development of predictive plant growth models. The driving hypothesis of this research was that root zone stress response mechanisms in perennial fruit tree crops is dynamic and dependent on tree maturity and reproductive capability. This was tested by investigating long-term ET, biomass production and fruit yield in date palms (Phoenix dactylifera L., cv. Medjool) under conditions of salinity. Elevated salinity levels in the soil solution were maintained for 6 years in large weighing-drainage lysimeters by irrigation with water having electrical conductivity (EC) of 1.8, 4, 8 and 12dSm−1. Salinity acted dynamically with a long-term consequence of increasing relative negative response to water consumption and plant growth that may be explained either as an accumulated effect or increasing sensitivity. Sensitivity to salinity stabilized at the highest measured levels after the trees matured and began producing fruit. Date palms were found to be much less tolerant to salinity than expected based on previous literature. Trees irrigated with low salinity (EC=1.8dSm−1) water were almost twice the size (based on ET and growth rates) than trees irrigated with EC=4dSm−1 water after 5 years. Fruit production of the larger trees was 35–50% greater than for the smaller, salt affected, trees. Long term irrigation with very high EC of irrigation water (8 and 12dSm−1) was found to be commercially impractical as growth and yield were severely reduced. The results raise questions regarding the nature of mechanisms for salinity tolerance in date palms, indicate incentives to irrigate dates with higher rather than lower quality water, and present a particular challenge for modelers to correctly choose salinity response functions for dates as well as other perennial crops.

Suggested Citation

  • Tripler, Effi & Shani, Uri & Mualem, Yechezkel & Ben-Gal, Alon, 2011. "Long-term growth, water consumption and yield of date palm as a function of salinity," Agricultural Water Management, Elsevier, vol. 99(1), pages 128-134.
  • Handle: RePEc:eee:agiwat:v:99:y:2011:i:1:p:128-134
    DOI: 10.1016/j.agwat.2011.06.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377411001454
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2011.06.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ben-Gal, Alon & Ityel, Eviatar & Dudley, Lynn & Cohen, Shabtai & Yermiyahu, Uri & Presnov, Eugene & Zigmond, Leah & Shani, Uri, 2008. "Effect of irrigation water salinity on transpiration and on leaching requirements: A case study for bell peppers," Agricultural Water Management, Elsevier, vol. 95(5), pages 587-597, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giulia Marino & Daniele Zaccaria & Richard L. Snyder & Octavio Lagos & Bruce D. Lampinen & Louise Ferguson & Stephen R. Grattan & Cayle Little & Kristen Shapiro & Mahesh Lal Maskey & Dennis L. Corwin , 2019. "Actual Evapotranspiration and Tree Performance of Mature Micro-Irrigated Pistachio Orchards Grown on Saline-Sodic Soils in the San Joaquin Valley of California," Agriculture, MDPI, vol. 9(4), pages 1-21, April.
    2. Al-Dakheel, Abdullah J. & Hussain, M. Iftikhar & Abdulrahman, Abdulqader & Abdullah, AlHarith, 2022. "Long term assessment of salinity impact on fruit yield in eighteen date palm varieties," Agricultural Water Management, Elsevier, vol. 269(C).
    3. Serret, Maria D. & Al-Dakheel, Abdullah J. & Yousfi, Salima & Fernáandez-Gallego, Jose A. & Elouafi, Ismahane A. & Araus, José L., 2020. "Vegetation indices derived from digital images and stable carbon and nitrogen isotope signatures as indicators of date palm performance under salinity," Agricultural Water Management, Elsevier, vol. 230(C).
    4. Al-Muaini, Ahmed & Green, Steve & Dakheel, Abdullah & Abdullah, Al-Hareth & Sallam, Osama & Abou Dahr, Wasel Abdelwahid & Dixon, Steve & Kemp, Peter & Clothier, Brent, 2019. "Water requirements for irrigation with saline groundwater of three date-palm cultivars with different salt-tolerances in the hyper-arid United Arab Emirates," Agricultural Water Management, Elsevier, vol. 222(C), pages 213-220.
    5. Zhen, Jingbo & Lazarovitch, Naftali & Tripler, Effi, 2020. "Effects of fruit load intensity and irrigation level on fruit quality, water productivity and net profits of date palms," Agricultural Water Management, Elsevier, vol. 241(C).
    6. Haj-Amor, Zied & Kumar Acharjee, Tapos & Dhaouadi, Latifa & Bouri, Salem, 2020. "Impacts of climate change on irrigation water requirement of date palms under future salinity trend in coastal aquifer of Tunisian oasis," Agricultural Water Management, Elsevier, vol. 228(C).
    7. Meir, M. & Zaccai, M. & Raveh, E. & Ben-Asher, J. & Tel-Zur, N., 2014. "Performance of Ziziphus jujuba trees correlates with tissue mineral content under salinity conditions," Agricultural Water Management, Elsevier, vol. 142(C), pages 47-55.
    8. Mishari A. Alnaim & Magdy S. Mohamed & Maged Mohammed & Muhammad Munir, 2022. "Effects of Automated Irrigation Systems and Water Regimes on Soil Properties, Water Productivity, Yield and Fruit Quality of Date Palm," Agriculture, MDPI, vol. 12(3), pages 1-21, February.
    9. Hu, Yanzhe & Kang, Shaozhong & Ding, Risheng & Zhao, Qing, 2021. "A crude protein and fiber model of alfalfa incorporating growth age under water and salt stress," Agricultural Water Management, Elsevier, vol. 255(C).
    10. Al-Muaini, Ahmed & Green, Steve & Abou Dahr, Wasel Abdelwahid & Kennedy, Lesley & Kemp, Peter & Dawoud, Mohamed & Clothier, Brent, 2019. "Water use and irrigation requirements for date palms on commercial farms in the hyper-arid United Arab Emirates," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    11. Tripler, Effi & Shani, Uri & Ben-Gal, Alon & Mualem, Yechezkel, 2012. "Apparent steady state conditions in high resolution weighing-drainage lysimeters containing date palms grown under different salinities," Agricultural Water Management, Elsevier, vol. 107(C), pages 66-73.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raveh, Eran & Ben-Gal, Alon, 2016. "Irrigation with water containing salts: Evidence from a macro-data national case study in Israel," Agricultural Water Management, Elsevier, vol. 170(C), pages 176-179.
    2. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    3. de Clercq, W.P. & Van Meirvenne, M. & Fey, M.V., 2009. "Prediction of the soil-depth salinity-trend in a vineyard after sustained irrigation with saline water," Agricultural Water Management, Elsevier, vol. 96(3), pages 395-404, March.
    4. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    5. Benes, S.E. & Adhikari, D.D. & Grattan, S.R. & Snyder, R.L., 2012. "Evapotranspiration potential of forages irrigated with saline-sodic drainage water," Agricultural Water Management, Elsevier, vol. 105(C), pages 1-7.
    6. Yasuor, Hagai & Yermiyahu, Uri & Ben-Gal, Alon, 2020. "Consequences of irrigation and fertigation of vegetable crops with variable quality water: Israel as a case study," Agricultural Water Management, Elsevier, vol. 242(C).
    7. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    8. Ityel, Eviatar & Ben-Gal, Alon & Silberbush, Moshe & Lazarovitch, Naftali, 2014. "Increased root zone oxygen by a capillary barrier is beneficial to bell pepper irrigated with brackish water in an arid region," Agricultural Water Management, Elsevier, vol. 131(C), pages 108-114.
    9. Che, Zheng & Wang, Jun & Li, Jiusheng, 2022. "Modeling strategies to balance salt leaching and nitrogen loss for drip irrigation with saline water in arid regions," Agricultural Water Management, Elsevier, vol. 274(C).
    10. Eran Raveh & Alon Ben-Gal, 2018. "Leveraging Sustainable Irrigated Agriculture via Desalination: Evidence from a Macro-Data Case Study in Israel," Sustainability, MDPI, vol. 10(4), pages 1-8, March.
    11. Yasuor, Hagai & Tamir, Guy & Stein, Avraham & Cohen, Shabtai & Bar-Tal, Asher & Ben-Gal, Alon & Yermiyahu, Uri, 2017. "Does water salinity affect pepper plant response to nitrogen fertigation?," Agricultural Water Management, Elsevier, vol. 191(C), pages 57-66.
    12. Bhantana, Parashuram & Lazarovitch, Naftali, 2010. "Evapotranspiration, crop coefficient and growth of two young pomegranate (Punica granatum L.) varieties under salt stress," Agricultural Water Management, Elsevier, vol. 97(5), pages 715-722, May.
    13. Maestre-Valero, J.F. & Martínez-Alvarez, V. & Gallego-Elvira, B. & Pittaway, P., 2011. "Effects of a suspended shade cloth cover on water quality of an agricultural reservoir for irrigation," Agricultural Water Management, Elsevier, vol. 100(1), pages 70-75.
    14. Amninder Singh & Nigel W. T. Quinn & Sharon E. Benes & Florence Cassel, 2020. "Policy-Driven Sustainable Saline Drainage Disposal and Forage Production in the Western San Joaquin Valley of California," Sustainability, MDPI, vol. 12(16), pages 1-27, August.
    15. Vinod Phogat & Tim Pitt & Paul Petrie & Jirka Šimůnek & Michael Cutting, 2023. "Optimization of Irrigation of Wine Grapes with Brackish Water for Managing Soil Salinization," Land, MDPI, vol. 12(10), pages 1-29, October.
    16. Morales-Garcia, Dagobiet & Stewart, Katrine A. & Seguin, Philippe & Madramootoo, Chandra, 2011. "Supplemental saline drip irrigation applied at different growth stages of two bell pepper cultivars grown with or without mulch in non-saline soil," Agricultural Water Management, Elsevier, vol. 98(5), pages 893-898, March.
    17. Palmate, Santosh S. & Kumar, Saurav & Poulose, Thomas & Ganjegunte, Girisha K. & Chaganti, Vijayasatya N. & Sheng, Zhuping, 2022. "Comparing the effect of different irrigation water scenarios on arid region pecan orchard using a system dynamics approach," Agricultural Water Management, Elsevier, vol. 265(C).
    18. Nicolas, Floyid & Kamai, Tamir & Ben-Gal, Alon & Ochoa-Brito, Jose & Daccache, Andre & Ogunmokun, Felix & Kisekka, Isaya, 2023. "Assessing salinity impacts on crop yield and economic returns in the Central Valley," Agricultural Water Management, Elsevier, vol. 287(C).
    19. Ityel, Eviatar & Lazarovitch, Naftali & Silberbush, Moshe & Ben-Gal, Alon, 2012. "An artificial capillary barrier to improve root-zone conditions for horticultural crops: Response of pepper plants to matric head and irrigation water salinity," Agricultural Water Management, Elsevier, vol. 105(C), pages 13-20.
    20. Hao, Guochen & Han, Kewu & Shi, Kebin, 2023. "Effect of floating balls on evaporation inhibition, surface energy balance and biological water quality parameters at different coverage fractions," Agricultural Water Management, Elsevier, vol. 287(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:99:y:2011:i:1:p:128-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.