IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v255y2021ics0378377421003024.html
   My bibliography  Save this article

A crude protein and fiber model of alfalfa incorporating growth age under water and salt stress

Author

Listed:
  • Hu, Yanzhe
  • Kang, Shaozhong
  • Ding, Risheng
  • Zhao, Qing

Abstract

Crude protein (CP) and fiber are the two most important quality traits of forage crops, and accurately estimating them under water and salt stress is of great significance to the production of high-quality alfalfa. However, there is seldom an applicable quality model. Here, we conducted pot and plot experiments under three irrigation amounts (full irrigation W1, moderate water deficit W2, and severe water deficit W3) and six soil salinity levels (S0, S1, S2, S3, S4, and S5, indicating 0, 1, 2, 3, 4, and 5‰ mass ratio of salt per unit soil mass, respectively), to examine the responses of CP and relative feed value (RFV) and develop CP and RFV models in alfalfa at different growth ages under combined water and salt stress. We found that there was a negative parabolic relationship between relative alfalfa CP (CPr) and relative soil electrical conductivity (ECr) with a ECr threshold (ECrth) for maximum CPr. Moderate water stress improved the CPr, while cutting number related to growth age had the opposite effect. The ECrth tended to decrease with increasing water stress and growth age, i.e., they increased the sensitivity of CPr to salt stress. Relative RFV (RFVr) of alfalfa was improved by water and salt stress, however, at the expense of biomass reduction, and the rate of increase declined with increasing growth age. Based on the above, crude protein and fiber models of alfalfa incorporating growth age under water and salt stress were developed, and performed well under pot (CP model: r2 = 0.94; RFV model: r2 = 0.98) and plot conditions (CP model: r2 = 0.95; RFV model: r2 = 0.88). Overall, the developed CP and RFV models would provide an essential framework for the production of high-quality forage in saline soil, conservation of water resources, and suppression of salinization.

Suggested Citation

  • Hu, Yanzhe & Kang, Shaozhong & Ding, Risheng & Zhao, Qing, 2021. "A crude protein and fiber model of alfalfa incorporating growth age under water and salt stress," Agricultural Water Management, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421003024
    DOI: 10.1016/j.agwat.2021.107037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421003024
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paredes, Paula & Pereira, Luis S. & Rodrigues, Gonçalo C. & Botelho, Nuno & Torres, Maria Odete, 2017. "Using the FAO dual crop coefficient approach to model water use and productivity of processing pea (Pisum sativum L.) as influenced by irrigation strategies," Agricultural Water Management, Elsevier, vol. 189(C), pages 5-18.
    2. Jorge F. S. Ferreira & Monica V. Cornacchione & Xuan Liu & Donald L. Suarez, 2015. "Nutrient Composition, Forage Parameters, and Antioxidant Capacity of Alfalfa ( Medicago sativa , L.) in Response to Saline Irrigation Water," Agriculture, MDPI, vol. 5(3), pages 1-21, July.
    3. Jahanzad, E. & Jorat, M. & Moghadam, H. & Sadeghpour, A. & Chaichi, M.-R. & Dashtaki, M., 2013. "Response of a new and a commonly grown forage sorghum cultivar to limited irrigation and planting density," Agricultural Water Management, Elsevier, vol. 117(C), pages 62-69.
    4. Suyama, H. & Benes, S.E. & Robinson, P.H. & Grattan, S.R. & Grieve, C.M. & Getachew, G., 2007. "Forage yield and quality under irrigation with saline-sodic drainage water: Greenhouse evaluation," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 159-172, March.
    5. Díaz, F.J. & Grattan, S.R. & Reyes, J.A. & de la Roza-Delgado, B. & Benes, S.E. & Jiménez, C. & Dorta, M. & Tejedor, M., 2018. "Using saline soil and marginal quality water to produce alfalfa in arid climates," Agricultural Water Management, Elsevier, vol. 199(C), pages 11-21.
    6. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng & Zhang, Xiaotao, 2018. "Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 438-450.
    7. Schiattone, M.I. & Candido, V. & Cantore, V. & Montesano, F.F. & Boari, F., 2017. "Water use and crop performance of two wild rocket genotypes under salinity conditions," Agricultural Water Management, Elsevier, vol. 194(C), pages 214-221.
    8. Molero, Gemma & Tcherkez, Guillaume & Roca, Regina & Mauve, Caroline & Cabrera-Bosquet, Llorenç & Araus, José Luis & Nogués, Salvador & Aranjuelo, Iker, 2019. "Do metabolic changes underpin physiological responses to water limitation in alfalfa (Medicago sativa) plants during a regrowth period?," Agricultural Water Management, Elsevier, vol. 212(C), pages 1-11.
    9. Tripler, Effi & Shani, Uri & Mualem, Yechezkel & Ben-Gal, Alon, 2011. "Long-term growth, water consumption and yield of date palm as a function of salinity," Agricultural Water Management, Elsevier, vol. 99(1), pages 128-134.
    10. Cavero, Jose & Faci, Jose M. & Medina, Eva T. & Martínez-Cob, Antonio, 2017. "Alfalfa forage production under solid-set sprinkler irrigation in a semiarid climate," Agricultural Water Management, Elsevier, vol. 191(C), pages 184-192.
    11. Al-Dakheel, Abdullah J. & Iftikhar Hussain, M. & Abdul Rahman, Abdul Qader M., 2015. "Impact of irrigation water salinity on agronomical and quality attributes of Cenchrus ciliaris L. accessions," Agricultural Water Management, Elsevier, vol. 159(C), pages 148-154.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan Qiu & Yamin Wang & Yaqiong Fan & Xinmei Hao & Sien Li & Shaozhong Kang, 2023. "Root, Yield, and Quality of Alfalfa Affected by Soil Salinity in Northwest China," Agriculture, MDPI, vol. 13(4), pages 1-17, March.
    2. Qiang Lu & Duowen Sa & Zhen Wang & Zhijun Wang & Gentu Ge & Yushan Jia & Tingyu Liu & Lin Sun, 2022. "Differential Physiological Characteristics and Fungal Composition of Alfalfa under Salt Stress in Degraded Grasslands," Agriculture, MDPI, vol. 12(10), pages 1-12, October.
    3. Zhang, Siqi & Gong, Jirui & Xiao, Cunde & Yang, Xiaofan & Li, Xiaobing & Zhang, Zihe & Song, Liangyuan & Zhang, Weiyuan & Dong, Xuede & Hu, Yuxia, 2024. "Bupleurum chinense and Medicago sativa sustain their growth in agrophotovoltaic systems by regulating photosynthetic mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Li, Hao & Hou, Xuemin & Bertin, Nadia & Ding, Risheng & Du, Taisheng, 2023. "Quantitative responses of tomato yield, fruit quality and water use efficiency to soil salinity under different water regimes in Northwest China," Agricultural Water Management, Elsevier, vol. 277(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Díaz, F.J. & Grattan, S.R. & Reyes, J.A. & de la Roza-Delgado, B. & Benes, S.E. & Jiménez, C. & Dorta, M. & Tejedor, M., 2018. "Using saline soil and marginal quality water to produce alfalfa in arid climates," Agricultural Water Management, Elsevier, vol. 199(C), pages 11-21.
    2. Amninder Singh & Nigel W. T. Quinn & Sharon E. Benes & Florence Cassel, 2020. "Policy-Driven Sustainable Saline Drainage Disposal and Forage Production in the Western San Joaquin Valley of California," Sustainability, MDPI, vol. 12(16), pages 1-27, August.
    3. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    4. J. Jed Brown & Probir Das & Mohammad Al-Saidi, 2018. "Sustainable Agriculture in the Arabian/Persian Gulf Region Utilizing Marginal Water Resources: Making the Best of a Bad Situation," Sustainability, MDPI, vol. 10(5), pages 1-16, April.
    5. Li, Hao & Hou, Xuemin & Bertin, Nadia & Ding, Risheng & Du, Taisheng, 2023. "Quantitative responses of tomato yield, fruit quality and water use efficiency to soil salinity under different water regimes in Northwest China," Agricultural Water Management, Elsevier, vol. 277(C).
    6. Shao, Guomin & Han, Wenting & Zhang, Huihui & Liu, Shouyang & Wang, Yi & Zhang, Liyuan & Cui, Xin, 2021. "Mapping maize crop coefficient Kc using random forest algorithm based on leaf area index and UAV-based multispectral vegetation indices," Agricultural Water Management, Elsevier, vol. 252(C).
    7. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    8. Liu, Minguo & Wang, Zikui & Mu, Le & Xu, Rui & Yang, Huimin, 2021. "Effect of regulated deficit irrigation on alfalfa performance under two irrigation systems in the inland arid area of midwestern China," Agricultural Water Management, Elsevier, vol. 248(C).
    9. Pengrui Ai & Yingjie Ma, 2020. "Estimation of Evapotranspiration of a Jujube/Cotton Intercropping System in an Arid Area Based on the Dual Crop Coefficient Method," Agriculture, MDPI, vol. 10(3), pages 1-14, March.
    10. Kamran, Muhammad & Yan, Zhengang & Chang, Shenghua & Ning, Jiao & Lou, Shanning & Ahmad, Irshad & Ghani, Muhammad Usman & Arif, Muhammad & El Sabagh, Ayman & Hou, Fujiang, 2023. "Interactive effects of reduced irrigation and nitrogen fertilization on resource use efficiency, forage nutritive quality, yield, and economic benefits of spring wheat in the arid region of Northwest ," Agricultural Water Management, Elsevier, vol. 275(C).
    11. Wioletta Biel & Cezary Podsiadło & Robert Witkowicz & Jagoda Kępińska-Pacelik & Sławomir Stankowski, 2023. "Effect of Irrigation, Nitrogen Fertilization and Amino Acid Biostimulant on Proximate Composition and Energy Value of Pisum sativum L. Seeds," Agriculture, MDPI, vol. 13(2), pages 1-15, February.
    12. Jorge F. S. Ferreira & Monica V. Cornacchione & Xuan Liu & Donald L. Suarez, 2015. "Nutrient Composition, Forage Parameters, and Antioxidant Capacity of Alfalfa ( Medicago sativa , L.) in Response to Saline Irrigation Water," Agriculture, MDPI, vol. 5(3), pages 1-21, July.
    13. Haj-Amor, Zied & Kumar Acharjee, Tapos & Dhaouadi, Latifa & Bouri, Salem, 2020. "Impacts of climate change on irrigation water requirement of date palms under future salinity trend in coastal aquifer of Tunisian oasis," Agricultural Water Management, Elsevier, vol. 228(C).
    14. Meir, M. & Zaccai, M. & Raveh, E. & Ben-Asher, J. & Tel-Zur, N., 2014. "Performance of Ziziphus jujuba trees correlates with tissue mineral content under salinity conditions," Agricultural Water Management, Elsevier, vol. 142(C), pages 47-55.
    15. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    16. Cao, Yune & Gao, Yanming & Li, Jianshe & Tian, Yongqiang, 2019. "Straw composts, gypsum and their mixtures enhance tomato yields under continuous saline water irrigation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    17. Yan Li & Derong Su, 2017. "Alfalfa Water Use and Yield under Different Sprinkler Irrigation Regimes in North Arid Regions of China," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    18. Yang, Hui & Du, Taisheng & Mao, Xiaomin & Ding, Risheng & Shukla, Manoj K., 2019. "A comprehensive method of evaluating the impact of drought and salt stress on tomato growth and fruit quality based on EPIC growth model," Agricultural Water Management, Elsevier, vol. 213(C), pages 116-127.
    19. Han, Xiaoyu & Kang, Yaohu & Wan, Shuqin & Li, Xiaobin, 2022. "Effect of salinity on oleic sunflower (Helianthus annuus Linn.) under drip irrigation in arid area of Northwest China," Agricultural Water Management, Elsevier, vol. 259(C).
    20. Dai, Yulong & Fan, Junliang & Liao, Zhenqi & Zhang, Chen & Yu, Jiang & Feng, Hanlong & Zhang, Fucang & Li, Zhijun, 2022. "Supplemental irrigation and modified plant density improved photosynthesis, grain yield and water productivity of winter wheat under ridge-furrow mulching," Agricultural Water Management, Elsevier, vol. 274(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421003024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.