IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v100y2011i1p70-75.html
   My bibliography  Save this article

Effects of a suspended shade cloth cover on water quality of an agricultural reservoir for irrigation

Author

Listed:
  • Maestre-Valero, J.F.
  • Martínez-Alvarez, V.
  • Gallego-Elvira, B.
  • Pittaway, P.

Abstract

Water availability and quality are two fundamental factors for agriculture in arid and semi-arid regions. This study evaluates the effects of a water-permeable, Suspended Shade Cloth Cover (SSCC), on the quality of water stored in an on-farm Agricultural Water Reservoir (AWR). Water quality (water temperature, electrical conductivity, chlorophyll-a concentration, dissolved oxygen concentration and water turbidity) and environmental (evaporation, rainfall, wind speed and solar radiation) parameters were measured over a 2-year period in a typical AWR located in south-eastern Spain. In the first year, the AWR remained uncovered and the behaviour was quasi-isothermal. In the second year, installing a SSCC induced a thermal gradient in the water that reached a maximum temperature difference of 12°C during summer. The lack of turbulence under the cover and the reduction in photosynthesis (95% reduction of chlorophyll-a) reduced the concentration of dissolved oxygen to 1.5mgL−1, and turbidity from 40NTU at installation to less than 1NTU. The positive balance between rainfall and evaporation during the second year reduced the electrical conductivity of the water by 8.2%. The improvement in water quality associated with the installation of a SSCC increases the efficiency of drip irrigation systems by reducing the water filtering requirements, the likelihood of emitter clogging, and the risk of irrigation-induced salinity.

Suggested Citation

  • Maestre-Valero, J.F. & Martínez-Alvarez, V. & Gallego-Elvira, B. & Pittaway, P., 2011. "Effects of a suspended shade cloth cover on water quality of an agricultural reservoir for irrigation," Agricultural Water Management, Elsevier, vol. 100(1), pages 70-75.
  • Handle: RePEc:eee:agiwat:v:100:y:2011:i:1:p:70-75
    DOI: 10.1016/j.agwat.2011.08.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377411002277
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2011.08.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brainwood, M. A. & Burgin, S. & Maheshwari, B., 2004. "Temporal variations in water quality of farm dams: impacts of land use and water sources," Agricultural Water Management, Elsevier, vol. 70(2), pages 151-175, November.
    2. Alvarez, V. Martinez & Baille, A. & Martinez, J.M. Molina & Gonzalez-Real, M.M., 2006. "Efficiency of shading materials in reducing evaporation from free water surfaces," Agricultural Water Management, Elsevier, vol. 84(3), pages 229-239, August.
    3. Ben-Gal, Alon & Ityel, Eviatar & Dudley, Lynn & Cohen, Shabtai & Yermiyahu, Uri & Presnov, Eugene & Zigmond, Leah & Shani, Uri, 2008. "Effect of irrigation water salinity on transpiration and on leaching requirements: A case study for bell peppers," Agricultural Water Management, Elsevier, vol. 95(5), pages 587-597, May.
    4. Martinez Alvarez, V. & González-Real, M.M. & Baille, A. & Maestre Valero, J.F. & Gallego Elvira, B., 2008. "Regional assessment of evaporation from agricultural irrigation reservoirs in a semiarid climate," Agricultural Water Management, Elsevier, vol. 95(9), pages 1056-1066, September.
    5. Martínez Alvarez, V. & Leyva, J. Calatrava & Maestre Valero, J.F. & Górriz, B. Martín, 2009. "Economic assessment of shade-cloth covers for agricultural irrigation reservoirs in a semi-arid climate," Agricultural Water Management, Elsevier, vol. 96(9), pages 1351-1359, September.
    6. Maestre-Valero, J.F. & Martínez-Alvarez, V., 2010. "Effects of drip irrigation systems on the recovery of dissolved oxygen from hypoxic water," Agricultural Water Management, Elsevier, vol. 97(11), pages 1806-1812, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Ke-Wu & Shi, Ke-Bin & Yan, Xin-Jun, 2020. "Evaporation loss and energy balance of agricultural reservoirs covered with counterweighted spheres in arid region," Agricultural Water Management, Elsevier, vol. 238(C).
    2. Exley, G. & Hernandez, R.R. & Page, T. & Chipps, M. & Gambro, S. & Hersey, M. & Lake, R. & Zoannou, K.-S. & Armstrong, A., 2021. "Scientific and stakeholder evidence-based assessment: Ecosystem response to floating solar photovoltaics and implications for sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Ke-Wu Han & Ke-Bin Shi & Xin-Jun Yan & Yang-Yu Cheng, 2019. "Water Savings Efficiency of Counterweighted Spheres Covering a Plain Reservoir in an Arid Area," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1867-1880, March.
    4. Abdullah Alodah, 2023. "Towards Sustainable Water Resources Management Considering Climate Change in the Case of Saudi Arabia," Sustainability, MDPI, vol. 15(20), pages 1-29, October.
    5. Maestre-Valero, J.F. & Martínez-Alvarez, V. & Nicolas, E., 2013. "Physical, chemical and microbiological effects of suspended shade cloth covers on stored water for irrigation," Agricultural Water Management, Elsevier, vol. 118(C), pages 70-78.
    6. Carvajal, F. & Agüera, F. & Sánchez-Hermosilla, J., 2014. "Water balance in artificial on-farm agricultural water reservoirs for the irrigation of intensive greenhouse crops," Agricultural Water Management, Elsevier, vol. 131(C), pages 146-155.
    7. López-Felices, Belén & Aznar-Sánchez, Jose A. & Velasco-Muñoz, Juan F. & Mesa-Vázquez, Ernesto, 2023. "Examining the perceptions and behaviours of farmers regarding the installation of covers over irrigation ponds: Evidence from South-east Spain," Agricultural Water Management, Elsevier, vol. 275(C).
    8. Hao, Guochen & Han, Kewu & Shi, Kebin, 2023. "Effect of floating balls on evaporation inhibition, surface energy balance and biological water quality parameters at different coverage fractions," Agricultural Water Management, Elsevier, vol. 287(C).
    9. El Bilali, Ali & Taghi, Youssef & Briouel, Omar & Taleb, Abdeslam & Brouziyne, Youssef, 2022. "A framework based on high-resolution imagery datasets and MCS for forecasting evaporation loss from small reservoirs in groundwater-based agriculture," Agricultural Water Management, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maestre-Valero, J.F. & Martínez-Alvarez, V., 2010. "Effects of drip irrigation systems on the recovery of dissolved oxygen from hypoxic water," Agricultural Water Management, Elsevier, vol. 97(11), pages 1806-1812, November.
    2. Hao, Guochen & Han, Kewu & Shi, Kebin, 2023. "Effect of floating balls on evaporation inhibition, surface energy balance and biological water quality parameters at different coverage fractions," Agricultural Water Management, Elsevier, vol. 287(C).
    3. David Martínez-Granados & José Maestre-Valero & Javier Calatrava & Victoriano Martínez-Alvarez, 2011. "The Economic Impact of Water Evaporation Losses from Water Reservoirs in the Segura Basin, SE Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3153-3175, October.
    4. Maestre-Valero, J.F. & Martínez-Alvarez, V. & Nicolas, E., 2013. "Physical, chemical and microbiological effects of suspended shade cloth covers on stored water for irrigation," Agricultural Water Management, Elsevier, vol. 118(C), pages 70-78.
    5. El Bilali, Ali & Taghi, Youssef & Briouel, Omar & Taleb, Abdeslam & Brouziyne, Youssef, 2022. "A framework based on high-resolution imagery datasets and MCS for forecasting evaporation loss from small reservoirs in groundwater-based agriculture," Agricultural Water Management, Elsevier, vol. 262(C).
    6. Han, Ke-Wu & Shi, Ke-Bin & Yan, Xin-Jun, 2020. "Evaporation loss and energy balance of agricultural reservoirs covered with counterweighted spheres in arid region," Agricultural Water Management, Elsevier, vol. 238(C).
    7. Soto-García, M. & Martínez-Alvarez, V. & García-Bastida, P.A. & Alcon, F. & Martin-Gorriz, B., 2013. "Effect of water scarcity and modernisation on the performance of irrigation districts in south-eastern Spain," Agricultural Water Management, Elsevier, vol. 124(C), pages 11-19.
    8. Martínez Alvarez, V. & Leyva, J. Calatrava & Maestre Valero, J.F. & Górriz, B. Martín, 2009. "Economic assessment of shade-cloth covers for agricultural irrigation reservoirs in a semi-arid climate," Agricultural Water Management, Elsevier, vol. 96(9), pages 1351-1359, September.
    9. Carvajal, F. & Agüera, F. & Sánchez-Hermosilla, J., 2014. "Water balance in artificial on-farm agricultural water reservoirs for the irrigation of intensive greenhouse crops," Agricultural Water Management, Elsevier, vol. 131(C), pages 146-155.
    10. Reca, Juan & García-Manzano, Alfonso & Martínez, Juan, 2015. "Optimal pumping scheduling model considering reservoir evaporation," Agricultural Water Management, Elsevier, vol. 148(C), pages 250-257.
    11. Raveh, Eran & Ben-Gal, Alon, 2016. "Irrigation with water containing salts: Evidence from a macro-data national case study in Israel," Agricultural Water Management, Elsevier, vol. 170(C), pages 176-179.
    12. Fridrich, Beata & Krčmar, Dejan & Dalmacija, Božo & Molnar, Jelena & Pešić, Vesna & Kragulj, Marijana & Varga, Nataša, 2014. "Impact of wastewater from pig farm lagoons on the quality of local groundwater," Agricultural Water Management, Elsevier, vol. 135(C), pages 40-53.
    13. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    14. Han, Ke-Wu & Shi, Ke-Bin & Yan, Xin-Jun & Ouyang, Jun & Lei, Peng & Hao, Guo-Chen, 2022. "Comparison of evaporation estimation methods for water surface under floating coverage in arid areas," Agricultural Water Management, Elsevier, vol. 264(C).
    15. Li Li & Qidi Yu & Ling Gao & Bin Yu & Zhipeng Lu, 2021. "The Effect of Urban Land-Use Change on Runoff Water Quality: A Case Study in Hangzhou City," IJERPH, MDPI, vol. 18(20), pages 1-12, October.
    16. J. Maestre-Valero & D. Martínez-Granados & V. Martínez-Alvarez & J. Calatrava, 2013. "Socio-Economic Impact of Evaporation Losses from Reservoirs Under Past, Current and Future Water Availability Scenarios in the Semi-Arid Segura Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1411-1426, March.
    17. Tripler, Effi & Shani, Uri & Mualem, Yechezkel & Ben-Gal, Alon, 2011. "Long-term growth, water consumption and yield of date palm as a function of salinity," Agricultural Water Management, Elsevier, vol. 99(1), pages 128-134.
    18. Juan G. Loaiza & Jesús Gabriel Rangel-Peraza & Antonio Jesús Sanhouse-García & Sergio Alberto Monjardín-Armenta & Zuriel Dathan Mora-Félix & Yaneth A. Bustos-Terrones, 2021. "Assessment of Water Quality in A Tropical Reservoir in Mexico: Seasonal, Spatial and Multivariable Analysis," IJERPH, MDPI, vol. 18(14), pages 1-20, July.
    19. Paweł Tomczyk & Mirosław Wiatkowski, 2021. "The Effects of Hydropower Plants on the Physicochemical Parameters of the Bystrzyca River in Poland," Energies, MDPI, vol. 14(8), pages 1-29, April.
    20. de Clercq, W.P. & Van Meirvenne, M. & Fey, M.V., 2009. "Prediction of the soil-depth salinity-trend in a vineyard after sustained irrigation with saline water," Agricultural Water Management, Elsevier, vol. 96(3), pages 395-404, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:100:y:2011:i:1:p:70-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.