IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v107y2012icp66-73.html
   My bibliography  Save this article

Apparent steady state conditions in high resolution weighing-drainage lysimeters containing date palms grown under different salinities

Author

Listed:
  • Tripler, Effi
  • Shani, Uri
  • Ben-Gal, Alon
  • Mualem, Yechezkel

Abstract

This study presents a novel investigation of long-term apparent steady state conditions under a prescribed leaching fraction criterion. The research was carried out during a 7-year investigation of date palm (Phoenix dactylifera L., cv. Medjool) trees exposed to elevated levels of irrigation water salinity. High resolution weighing lysimeters were designed and constructed to generate an accuracy of ±0.0075mm. The lysimeters were equipped with precision flux data acquisition that measured the oscillations of their daily water storage difference (ΔW) and evapotranspiration. The leaching fraction was kept constant throughout the study.

Suggested Citation

  • Tripler, Effi & Shani, Uri & Ben-Gal, Alon & Mualem, Yechezkel, 2012. "Apparent steady state conditions in high resolution weighing-drainage lysimeters containing date palms grown under different salinities," Agricultural Water Management, Elsevier, vol. 107(C), pages 66-73.
  • Handle: RePEc:eee:agiwat:v:107:y:2012:i:c:p:66-73
    DOI: 10.1016/j.agwat.2012.01.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377412000261
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2012.01.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Letey, J. & Feng, G.L., 2007. "Dynamic versus steady-state approaches to evaluate irrigation management of saline waters," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 1-10, July.
    2. Corwin, Dennis L. & Rhoades, James D. & Simunek, Jirka, 2007. "Leaching requirement for soil salinity control: Steady-state versus transient models," Agricultural Water Management, Elsevier, vol. 90(3), pages 165-180, June.
    3. Schierholz, I. & Schafer, D. & Kolle, O., 2000. "The Weiherbach data set:: An experimental data set for pesticide model testing on the field scale," Agricultural Water Management, Elsevier, vol. 44(1-3), pages 43-61, May.
    4. Tripler, Effi & Shani, Uri & Mualem, Yechezkel & Ben-Gal, Alon, 2011. "Long-term growth, water consumption and yield of date palm as a function of salinity," Agricultural Water Management, Elsevier, vol. 99(1), pages 128-134.
    5. Letey, J. & Hoffman, G.J. & Hopmans, J.W. & Grattan, S.R. & Suarez, D. & Corwin, D.L. & Oster, J.D. & Wu, L. & Amrhein, C., 2011. "Evaluation of soil salinity leaching requirement guidelines," Agricultural Water Management, Elsevier, vol. 98(4), pages 502-506, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiménez-Buendía, M. & Ruiz-Peñalver, L. & Vera-Repullo, J.A. & Intrigliolo-Molina, D.S. & Molina-Martínez, J.M., 2015. "Development and assessment of a network of water meters and rain gauges for determining the water balance. New SCADA monitoring software," Agricultural Water Management, Elsevier, vol. 151(C), pages 93-102.
    2. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    3. Raij, Iael & Ben-Gal, Alon & Lazarovitch, Naftali, 2018. "Soil and irrigation heterogeneity effects on drainage amount and concentration in lysimeters: A numerical study," Agricultural Water Management, Elsevier, vol. 195(C), pages 1-10.
    4. Ruiz-Peñalver, L. & Vera-Repullo, J.A. & Jiménez-Buendía, M. & Guzmán, I. & Molina-Martínez, J.M., 2015. "Development of an innovative low cost weighing lysimeter for potted plants: Application in lysimetric stations," Agricultural Water Management, Elsevier, vol. 151(C), pages 103-113.
    5. Groenveld, Thomas & Argaman, Amir & Šimůnek, Jiří & Lazarovitch, Naftali, 2021. "Numerical modeling to optimize nitrogen fertigation with consideration of transient drought and nitrogen stress," Agricultural Water Management, Elsevier, vol. 254(C).
    6. Nicolas, Floyid & Kamai, Tamir & Ben-Gal, Alon & Ochoa-Brito, Jose & Daccache, Andre & Ogunmokun, Felix & Kisekka, Isaya, 2023. "Assessing salinity impacts on crop yield and economic returns in the Central Valley," Agricultural Water Management, Elsevier, vol. 287(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    2. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    3. Shahrokhnia, Hossein & Wu, Laosheng, 2021. "SALEACH: A new web-based soil salinity leaching model for improved irrigation management," Agricultural Water Management, Elsevier, vol. 252(C).
    4. Gill, Bruce C. & Terry, Alister D., 2016. "‘Keeping salt on the farm’—Evaluation of an on-farm salinity management system in the Shepparton irrigation region of South-East Australia," Agricultural Water Management, Elsevier, vol. 164(P2), pages 291-303.
    5. Barnard, J.H. & Bennie, A.T.P. & van Rensburg, L.D. & Preez, C.C. du, 2015. "SWAMP: A soil layer water supply model for simulating macroscopic crop water uptake under osmotic stress," Agricultural Water Management, Elsevier, vol. 148(C), pages 150-163.
    6. Wichelns, Dennis & Qadir, Manzoor, 2015. "Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater," Agricultural Water Management, Elsevier, vol. 157(C), pages 31-38.
    7. Skaggs, T.H. & Suarez, D.L. & Goldberg, S. & Shouse, P.J., 2012. "Replicated lysimeter measurements of tracer transport in clayey soils: Effects of irrigation water salinity," Agricultural Water Management, Elsevier, vol. 110(C), pages 84-93.
    8. Peragón, Juan M. & Pérez-Latorre, Francisco J. & Delgado, Antonio & Tóth, Tibor, 2018. "Best management irrigation practices assessed by a GIS-based decision tool for reducing salinization risks in olive orchards," Agricultural Water Management, Elsevier, vol. 202(C), pages 33-41.
    9. Yasuor, Hagai & Yermiyahu, Uri & Ben-Gal, Alon, 2020. "Consequences of irrigation and fertigation of vegetable crops with variable quality water: Israel as a case study," Agricultural Water Management, Elsevier, vol. 242(C).
    10. Haj-Amor, Zied & Kumar Acharjee, Tapos & Dhaouadi, Latifa & Bouri, Salem, 2020. "Impacts of climate change on irrigation water requirement of date palms under future salinity trend in coastal aquifer of Tunisian oasis," Agricultural Water Management, Elsevier, vol. 228(C).
    11. Ben-Gal, Alon & Ityel, Eviatar & Dudley, Lynn & Cohen, Shabtai & Yermiyahu, Uri & Presnov, Eugene & Zigmond, Leah & Shani, Uri, 2008. "Effect of irrigation water salinity on transpiration and on leaching requirements: A case study for bell peppers," Agricultural Water Management, Elsevier, vol. 95(5), pages 587-597, May.
    12. Zhen, Jingbo & Lazarovitch, Naftali & Tripler, Effi, 2020. "Effects of fruit load intensity and irrigation level on fruit quality, water productivity and net profits of date palms," Agricultural Water Management, Elsevier, vol. 241(C).
    13. Peragón, Juan Manuel & Delgado, Antonio & Pérez-Latorre, Francisco J., 2015. "A GIS-based quality assessment model for olive tree irrigation water in southern Spain," Agricultural Water Management, Elsevier, vol. 148(C), pages 232-240.
    14. Amninder Singh & Nigel W. T. Quinn & Sharon E. Benes & Florence Cassel, 2020. "Policy-Driven Sustainable Saline Drainage Disposal and Forage Production in the Western San Joaquin Valley of California," Sustainability, MDPI, vol. 12(16), pages 1-27, August.
    15. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Alexandre, Carlos & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use, soil water balance and soil salinization risks of Mediterranean tree orchards in southern Portugal under current climate variability: Issues for salinity control and irrigation management," Agricultural Water Management, Elsevier, vol. 283(C).
    16. Liu, Anqi & Qu, Zhongyi & Nachshon, Uri, 2020. "On the potential impact of root system size and density on salt distribution in the root zone," Agricultural Water Management, Elsevier, vol. 234(C).
    17. Sun, Guanfang & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Qu, Zhongyi & Mao, Wei & Wu, Jingwei, 2019. "Development and application of long-term root zone salt balance model for predicting soil salinity in arid shallow water table area," Agricultural Water Management, Elsevier, vol. 213(C), pages 486-498.
    18. Al Khamisi, Saif A. & Prathapar, S.A. & Ahmed, M., 2013. "Conjunctive use of reclaimed water and groundwater in crop rotations," Agricultural Water Management, Elsevier, vol. 116(C), pages 228-234.
    19. Miroslav Kuburić & Milan Trifković & Žarko Nestorović, 2022. "Efficient Water Use and Greenhouse Gas Emission Reduction in Agricultural Land Use—The Aspect of Land Consolidation," Sustainability, MDPI, vol. 14(22), pages 1-13, November.
    20. Zalacáin, David & Martínez-Pérez, Silvia & Bienes, Ramón & García-Díaz, Andrés & Sastre-Merlín, Antonio, 2019. "Salt accumulation in soils and plants under reclaimed water irrigation in urban parks of Madrid (Spain)," Agricultural Water Management, Elsevier, vol. 213(C), pages 468-476.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:107:y:2012:i:c:p:66-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.