IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i10p1947-d1264020.html
   My bibliography  Save this article

Optimization of Irrigation of Wine Grapes with Brackish Water for Managing Soil Salinization

Author

Listed:
  • Vinod Phogat

    (Crop Sciences, South Australian Research and Development Institute, GPO Box 397, Adelaide, SA 5001, Australia
    School of Agriculture, Food and Wine, The University of Adelaide, PMB No.1, Adelaide, SA 5064, Australia
    College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia)

  • Tim Pitt

    (Crop Sciences, South Australian Research and Development Institute, GPO Box 397, Adelaide, SA 5001, Australia
    School of Agriculture, Food and Wine, The University of Adelaide, PMB No.1, Adelaide, SA 5064, Australia
    College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia)

  • Paul Petrie

    (Crop Sciences, South Australian Research and Development Institute, GPO Box 397, Adelaide, SA 5001, Australia
    School of Agriculture, Food and Wine, The University of Adelaide, PMB No.1, Adelaide, SA 5064, Australia
    College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
    School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052, Australia)

  • Jirka Šimůnek

    (Department of Environmental Sciences, University of California, Riverside, CA 92521, USA)

  • Michael Cutting

    (Murraylands and Riverland Landscape Board, Murray Bridge, SA 5253, Australia)

Abstract

Water scarcity and quality are critical impediments to sustainable crop production. In this study, HYDRUS-2D was calibrated using field measurements of water contents and salinities in the soil under wine grapes irrigated with river water ( Rw , 0.32 dS/m). The calibrated model was then used to evaluate the impact of (a) four different water qualities ranging from 0.32 ( Rw ) to 3.2 dS/m (brackish water, Gw ) including blended ( Mix ) and monthly alternating ( Alt ) irrigation modes; (b) two rainfall conditions (normal and 20% below normal); and (c) two leaching options (with and without 30 mm spring leaching irrigation) during the 2017–2022 growing seasons. Irrigation water quality greatly impacted root water uptake ( RWU ) by wine grapes and other water balance components. Irrigation with brackish water reduced average RWU by 18.7% compared to river water. Irrigation with blended water or from alternating water sources reduced RWU by 8.8 and 7%, respectively. Relatively small (2.8–8.2%) average annual drainage ( Dr ) in different scenarios produced a very low (0.05–0.16) leaching fraction. Modeling scenarios showed a tremendous impact of water quality on the salts build-up in the soil. The average electrical conductivity of the saturated soil extract ( EC e ) increased three times with Gw irrigation compared to Rw (current practices). Blended and alternate irrigation scenarios showed a 21 and 28% reduction in EC e , respectively, compared to Gw . Irrigation water quality substantially impacted site-specific actual basal ( K cb act ) and single ( K c act ) crop coefficients of grapevine. Threshold leaching efficiency estimated in terms of the salt mass leached vs. added ( LE s ; kg/kg) for salinity control ( LE s > 1) was achieved with LFs of 0.07, 0.12, 0.12, and 0.15 for the Rw , Mix , Alt , and Gw irrigations, respectively. Applying annual leaching irrigation (30 mm) before bud burst (spring) in the Mix and Alt with Rw and Gw scenarios was found to be the best strategy for managing irrigation-induced salinity in the root zone, lowering the EC e to levels comparable to irrigation with Rw . Modeling scenarios suggested that judicious use of water resources and continuous root zone monitoring could be key for salinity management under adverse climate and low water allocation conditions.

Suggested Citation

  • Vinod Phogat & Tim Pitt & Paul Petrie & Jirka Šimůnek & Michael Cutting, 2023. "Optimization of Irrigation of Wine Grapes with Brackish Water for Managing Soil Salinization," Land, MDPI, vol. 12(10), pages 1-29, October.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:10:p:1947-:d:1264020
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/10/1947/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/10/1947/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wichelns, Dennis & Qadir, Manzoor, 2015. "Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater," Agricultural Water Management, Elsevier, vol. 157(C), pages 31-38.
    2. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Wang, T. & López-Urrea, R. & Cancela, J.J. & Allen, R.G., 2020. "Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data," Agricultural Water Management, Elsevier, vol. 241(C).
    3. Letey, J. & Hoffman, G.J. & Hopmans, J.W. & Grattan, S.R. & Suarez, D. & Corwin, D.L. & Oster, J.D. & Wu, L. & Amrhein, C., 2011. "Evaluation of soil salinity leaching requirement guidelines," Agricultural Water Management, Elsevier, vol. 98(4), pages 502-506, February.
    4. Díaz, F.J. & Grattan, S.R. & Reyes, J.A. & de la Roza-Delgado, B. & Benes, S.E. & Jiménez, C. & Dorta, M. & Tejedor, M., 2018. "Using saline soil and marginal quality water to produce alfalfa in arid climates," Agricultural Water Management, Elsevier, vol. 199(C), pages 11-21.
    5. Oster, J. D., 1994. "Irrigation with poor quality water," Agricultural Water Management, Elsevier, vol. 25(3), pages 271-297, July.
    6. Ben-Gal, Alon & Ityel, Eviatar & Dudley, Lynn & Cohen, Shabtai & Yermiyahu, Uri & Presnov, Eugene & Zigmond, Leah & Shani, Uri, 2008. "Effect of irrigation water salinity on transpiration and on leaching requirements: A case study for bell peppers," Agricultural Water Management, Elsevier, vol. 95(5), pages 587-597, May.
    7. Rallo, G. & Paço, T.A. & Paredes, P. & Puig-Sirera, À. & Massai, R. & Provenzano, G. & Pereira, L.S., 2021. "Updated single and dual crop coefficients for tree and vine fruit crops," Agricultural Water Management, Elsevier, vol. 250(C).
    8. Cancela, J.J. & Fandiño, M. & Rey, B.J. & Martínez, E.M., 2015. "Automatic irrigation system based on dual crop coefficient, soil and plant water status for Vitis vinifera (cv Godello and cv Mencía)," Agricultural Water Management, Elsevier, vol. 151(C), pages 52-63.
    9. Aadhityaa Mohanavelu & Sujay Raghavendra Naganna & Nadhir Al-Ansari, 2021. "Irrigation Induced Salinity and Sodicity Hazards on Soil and Groundwater: An Overview of Its Causes, Impacts and Mitigation Strategies," Agriculture, MDPI, vol. 11(10), pages 1-17, October.
    10. Minhas, P.S. & Dubey, S.K. & Sharma, D.R., 2007. "Comparative affects of blending, intera/inter-seasonal cyclic uses of alkali and good quality waters on soil properties and yields of paddy and wheat," Agricultural Water Management, Elsevier, vol. 87(1), pages 83-90, January.
    11. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    12. Munitz, Sarel & Schwartz, Amnon & Netzer, Yishai, 2019. "Water consumption, crop coefficient and leaf area relations of a Vitis vinifera cv. 'Cabernet Sauvignon' vineyard," Agricultural Water Management, Elsevier, vol. 219(C), pages 86-94.
    13. Phogat, V. & Pitt, T. & Cox, J.W. & Šimůnek, J. & Skewes, M.A., 2018. "Soil water and salinity dynamics under sprinkler irrigated almond exposed to a varied salinity stress at different growth stages," Agricultural Water Management, Elsevier, vol. 201(C), pages 70-82.
    14. Ben-Asher, J. & van Dam, J. & Feddes, R.A. & Jhorar, R.K., 2006. "Irrigation of grapevines with saline water: II. Mathematical simulation of vine growth and yield," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 22-29, May.
    15. Evett, Steven R. & Schwartz, Robert C. & Casanova, Joaquin J. & Heng, Lee K., 2012. "Soil water sensing for water balance, ET and WUE," Agricultural Water Management, Elsevier, vol. 104(C), pages 1-9.
    16. Williams, Larry E. & Levin, Alexander D. & Fidelibus, Matthew W., 2022. "Crop coefficients (Kc) developed from canopy shaded area in California vineyards," Agricultural Water Management, Elsevier, vol. 271(C).
    17. Grattan, S.R. & Díaz, F.J. & Pedrero, F. & Vivaldi, G.A., 2015. "Assessing the suitability of saline wastewaters for irrigation of Citrus spp.: Emphasis on boron and specific-ion interactions," Agricultural Water Management, Elsevier, vol. 157(C), pages 48-58.
    18. Ramos, Tiago B. & Liu, Meihan & Paredes, Paula & Shi, Haibin & Feng, Zhuangzhuang & Lei, Huimin & Pereira, Luis S., 2023. "Salts dynamics in maize irrigation in the Hetao plateau using static water table lysimeters and HYDRUS-1D with focus on the autumn leaching irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    19. Minhas, P.S. & Qadir, Manzoor & Yadav, R.K., 2019. "Groundwater irrigation induced soil sodification and response options," Agricultural Water Management, Elsevier, vol. 215(C), pages 74-85.
    20. Ben-Asher, Jiftah & Tsuyuki, Itaru & Bravdo, Ben-Ami & Sagih, Moshe, 2006. "Irrigation of grapevines with saline water: I. Leaf area index, stomatal conductance, transpiration and photosynthesis," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 13-21, May.
    21. Wang, Shangtao & Zhu, Gaofeng & Xia, Dunsheng & Ma, Jinzhu & Han, Tuo & Ma, Ting & Zhang, Kun & Shang, Shasha, 2019. "The characteristics of evapotranspiration and crop coefficients of an irrigated vineyard in arid Northwest China," Agricultural Water Management, Elsevier, vol. 212(C), pages 388-398.
    22. Minhas, P. S., 1996. "Saline water management for irrigation in India," Agricultural Water Management, Elsevier, vol. 30(1), pages 1-24, March.
    23. Aragüés, R. & Medina, E.T. & Clavería, I. & Martínez-Cob, A. & Faci, J., 2014. "Regulated deficit irrigation, soil salinization and soil sodification in a table grape vineyard drip-irrigated with moderately saline waters," Agricultural Water Management, Elsevier, vol. 134(C), pages 84-93.
    24. Phogat, V. & Šimůnek, J. & Skewes, M.A. & Cox, J.W. & McCarthy, M.G., 2016. "Improving the estimation of evaporation by the FAO-56 dual crop coefficient approach under subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 178(C), pages 189-200.
    25. Phogat, V. & Cox, J.W. & Šimůnek, J., 2018. "Identifying the future water and salinity risks to irrigated viticulture in the Murray-Darling Basin, South Australia," Agricultural Water Management, Elsevier, vol. 201(C), pages 107-117.
    26. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    27. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    28. Murtaza, G. & Ghafoor, A. & Qadir, M., 2006. "Irrigation and soil management strategies for using saline-sodic water in a cotton-wheat rotation," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 98-114, March.
    29. Ana Iglesias & Luis Garrote & Sonia Quiroga & Marta Moneo, 2012. "A regional comparison of the effects of climate change on agricultural crops in Europe," Climatic Change, Springer, vol. 112(1), pages 29-46, May.
    30. Naresh, R. K. & Minhas, P. S. & Goyal, A. K. & Chauhan, C. P. S. & Gupta, R. K., 1993. "Conjunctive use of saline and non-saline waters. II. Field comparisions of cyclic uses and mixing for wheat," Agricultural Water Management, Elsevier, vol. 23(2), pages 139-148, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danying Du & Baozhong He & Xuefeng Luo & Shilong Ma & Yaning Song & Wen Yang, 2024. "Spatio-Temporal Variation Analysis of Soil Salinization in the Ougan-Kuqa River Oasis of China," Sustainability, MDPI, vol. 16(7), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    2. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use and soil water balance of Mediterranean tree crops assessed with the SIMDualKc model in orchards of southern Portugal," Agricultural Water Management, Elsevier, vol. 279(C).
    3. Rallo, G. & Paço, T.A. & Paredes, P. & Puig-Sirera, À. & Massai, R. & Provenzano, G. & Pereira, L.S., 2021. "Updated single and dual crop coefficients for tree and vine fruit crops," Agricultural Water Management, Elsevier, vol. 250(C).
    4. Phogat, V. & Cox, J.W. & Šimůnek, J., 2018. "Identifying the future water and salinity risks to irrigated viticulture in the Murray-Darling Basin, South Australia," Agricultural Water Management, Elsevier, vol. 201(C), pages 107-117.
    5. Williams, Larry E. & Levin, Alexander D. & Fidelibus, Matthew W., 2022. "Crop coefficients (Kc) developed from canopy shaded area in California vineyards," Agricultural Water Management, Elsevier, vol. 271(C).
    6. Pizarro, E. & Galleguillos, M. & Barría, P. & Callejas, R., 2022. "Irrigation management or climate change ? Which is more important to cope with water shortage in the production of table grape in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 263(C).
    7. Phogat, V. & Mallants, Dirk & Cox, J.W. & Šimůnek, J. & Oliver, D.P. & Pitt, T. & Petrie, P.R., 2020. "Impact of long-term recycled water irrigation on crop yield and soil chemical properties," Agricultural Water Management, Elsevier, vol. 237(C).
    8. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    9. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    10. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    11. Zhang, Yuehong & Li, Xianyue & Šimůnek, Jirí & Shi, Haibin & Chen, Ning & Hu, Qi & Tian, Tong, 2021. "Evaluating soil salt dynamics in a field drip-irrigated with brackish water and leached with freshwater during different crop growth stages," Agricultural Water Management, Elsevier, vol. 244(C).
    12. Ohana-Levi, Noa & Munitz, Sarel & Ben-Gal, Alon & Netzer, Yishai, 2020. "Evaluation of within-season grapevine evapotranspiration patterns and drivers using generalized additive models," Agricultural Water Management, Elsevier, vol. 228(C).
    13. Minhas, P.S. & Qadir, Manzoor & Yadav, R.K., 2019. "Groundwater irrigation induced soil sodification and response options," Agricultural Water Management, Elsevier, vol. 215(C), pages 74-85.
    14. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    15. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    16. Ramos, Tiago B. & Oliveira, Ana R. & Darouich, Hanaa & Gonçalves, Maria C. & Martínez-Moreno, Francisco J. & Rodríguez, Mario Ramos & Vanderlinden, Karl & Farzamian, Mohammad, 2023. "Field-scale assessment of soil water dynamics using distributed modeling and electromagnetic conductivity imaging," Agricultural Water Management, Elsevier, vol. 288(C).
    17. Zhang, Chen & Li, Xiaobin & Kang, Yaohu & Wang, Xunming, 2019. "Salt leaching and response of Dianthus chinensis L. to saline water drip-irrigation in two coastal saline soils," Agricultural Water Management, Elsevier, vol. 218(C), pages 8-16.
    18. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Alexandre, Carlos & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use, soil water balance and soil salinization risks of Mediterranean tree orchards in southern Portugal under current climate variability: Issues for salinity control and irrigation management," Agricultural Water Management, Elsevier, vol. 283(C).
    19. Nicolas, Floyid & Kamai, Tamir & Ben-Gal, Alon & Ochoa-Brito, Jose & Daccache, Andre & Ogunmokun, Felix & Kisekka, Isaya, 2023. "Assessing salinity impacts on crop yield and economic returns in the Central Valley," Agricultural Water Management, Elsevier, vol. 287(C).
    20. Barnard, Johannes Hendrikus & Matthews, Nicolette & du Preez, Christiaan Cornelius, 2021. "Formulating and assessing best water and salt management practices: Lessons from non-saline and water-logged irrigated fields," Agricultural Water Management, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:10:p:1947-:d:1264020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.