IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v132y2014icp10-22.html
   My bibliography  Save this article

Effects of tillage and application rate on atrazine transport to subsurface drainage: Evaluation of RZWQM using a six-year field study

Author

Listed:
  • Malone, R.W.
  • Nolan, B.T.
  • Ma, L.
  • Kanwar, R.S.
  • Pederson, C.
  • Heilman, P.

Abstract

Well tested agricultural system models can improve our understanding of the water quality effects of management practices under different conditions. The Root Zone Water Quality Model (RZWQM) has been tested under a variety of conditions. However, the current model's ability to simulate pesticide transport to subsurface drain flow over a long term period under different tillage systems and application rates is not clear. Therefore, we calibrated and tested RZWQM using six years of data from Nashua, Iowa. In this experiment, atrazine was spring applied at 2.8 (1990–1992) and 0.6kg/ha/yr (1993–1995) to two 0.4ha plots with different tillage (till and no-till). The observed and simulated average annual flow weighted atrazine concentrations (FWAC) in subsurface drain flow from the no-till plot were 3.7 and 3.2μg/L, respectively for the period with high atrazine application rates, and 0.8 and 0.9μg/L, respectively for the period with low application rates. The 1990–1992 observed average annual FWAC difference between the no-till and tilled plot was 2.4μg/L while the simulated difference was 2.1μg/L. These observed and simulated differences for 1993–1995 were 0.1 and 0.1μg/L, respectively. The Nash–Sutcliffe model performance statistic (EF) for cumulative atrazine flux to subsurface drain flow was 0.93 for the no-till plot testing years (1993–1995), which is comparable to other recent model tests. The value of EF is 1.0 when simulated data perfectly match observed data. The order of selected parameter sensitivity for RZWQM simulated FWAC was atrazine partition coefficient>number of macropores>atrazine half life in soil>soil hydraulic conductivity. Simulations from 1990 to 1995 with four different atrazine application rates applied at a constant rate throughout the simulation period showed concentrations in drain flow for the no-till plot to be twice those of the tilled plot. The differences were more pronounced in the early simulation period (1990–1992), partly because of the characteristics of macropore flow during large storms. The results suggest that RZWQM is a promising tool to study pesticide transport to subsurface drain flow under different tillage systems and application rates over several years, the concentrations of atrazine in drain flow can be higher with no-till than tilled soil over a range of atrazine application rates, and atrazine concentrations in drain flow are sensitive to the macropore flow characteristics under different tillage systems and rainfall timing and intensity.

Suggested Citation

  • Malone, R.W. & Nolan, B.T. & Ma, L. & Kanwar, R.S. & Pederson, C. & Heilman, P., 2014. "Effects of tillage and application rate on atrazine transport to subsurface drainage: Evaluation of RZWQM using a six-year field study," Agricultural Water Management, Elsevier, vol. 132(C), pages 10-22.
  • Handle: RePEc:eee:agiwat:v:132:y:2014:i:c:p:10-22
    DOI: 10.1016/j.agwat.2013.09.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377413002503
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2013.09.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rose, Kenneth A. & Megrey, Bernard A. & Werner, Francisco E. & Ware, Dan M., 2007. "Calibration of the NEMURO nutrient–phytoplankton–zooplankton food web model to a coastal ecosystem: Evaluation of an automated calibration approach," Ecological Modelling, Elsevier, vol. 202(1), pages 38-51.
    2. Lewan, Elisabet & Kreuger, Jenny & Jarvis, Nicholas, 2009. "Implications of precipitation patterns and antecedent soil water content for leaching of pesticides from arable land," Agricultural Water Management, Elsevier, vol. 96(11), pages 1633-1640, November.
    3. Branger, F. & Tournebize, J. & Carluer, N. & Kao, C. & Braud, I. & Vauclin, M., 2009. "A simplified modelling approach for pesticide transport in a tile-drained field: The PESTDRAIN model," Agricultural Water Management, Elsevier, vol. 96(3), pages 415-428, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Shenglan & Andersen​, Hans Estrup & Thodsen, Hans & Rubæk, Gitte Holton & Trolle, Dennis, 2016. "Extended SWAT model for dissolved reactive phosphorus transport in tile-drained fields and catchments," Agricultural Water Management, Elsevier, vol. 175(C), pages 78-90.
    2. Kuang, Naikun & Ma, Yuzhao & Hong, Shengzhe & Jiao, Fengli & Liu, Changyuan & Li, Quanqi & Han, Huifang, 2021. "Simulation of soil moisture dynamics, evapotranspiration, and water drainage of summer maize in response to different depths of subsoiling with RZWQM2," Agricultural Water Management, Elsevier, vol. 249(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González-Sanchis, Marí a & Del Campo, Antonio D. & Molina, Antonio J. & Fernandes, Tarcí sio J.G., 2015. "Modeling adaptive forest management of a semi-arid Mediterranean Aleppo pine plantation," Ecological Modelling, Elsevier, vol. 308(C), pages 34-44.
    2. Chalhoub, Maha & Gabrielle, Benoit & Tournebize, Julien & Chaumont, Cédric & Maugis, Pascal & Girardin, Cyril & Montagne, David & Baveye, Philippe C. & Garnier, Patricia, 2020. "Direct measurement of selected soil services in a drained agricultural field: Methodology development and case study in Saclay (France)," Ecosystem Services, Elsevier, vol. 42(C).
    3. Rose, Kenneth A. & Sable, Shaye & DeAngelis, Donald L. & Yurek, Simeon & Trexler, Joel C. & Graf, William & Reed, Denise J., 2015. "Proposed best modeling practices for assessing the effects of ecosystem restoration on fish," Ecological Modelling, Elsevier, vol. 300(C), pages 12-29.
    4. Truman, C.C. & Potter, T.L. & Nuti, R.C. & Franklin, D.H. & Bosch, D.D., 2011. "Antecedent water content effects on runoff and sediment yields from two Coastal Plain Ultisols," Agricultural Water Management, Elsevier, vol. 98(8), pages 1189-1196, May.
    5. Kishi, Michio J. & Kashiwai, Makoto & Ware, Daniel M. & Megrey, Bernard A. & Eslinger, David L. & Werner, Francisco E. & Noguchi-Aita, Maki & Azumaya, Tomonori & Fujii, Masahiko & Hashimoto, Shinji & , 2007. "NEMURO—a lower trophic level model for the North Pacific marine ecosystem," Ecological Modelling, Elsevier, vol. 202(1), pages 12-25.
    6. Ross, Karen A. & Bedward, Michael & Ellis, Murray V. & Deane, Andrew & Simpson, Christopher C. & Bradstock, Ross A., 2008. "Modelling the dynamics of white cypress pine Callitris glaucophylla woodlands in inland south-eastern Australia," Ecological Modelling, Elsevier, vol. 211(1), pages 11-24.
    7. Rose, Kenneth A. & Werner, Francisco E. & Megrey, Bernard A. & Aita, Maki Noguchi & Yamanaka, Yasuhiro & Hay, Douglas E. & Schweigert, Jake F. & Foster, Matthew Birch, 2007. "Simulated herring growth responses in the Northeastern Pacific to historic temperature and zooplankton conditions generated by the 3-dimensional NEMURO nutrient–phytoplankton–zooplankton model," Ecological Modelling, Elsevier, vol. 202(1), pages 184-195.
    8. Bracis, Chloe & Lehuta, Sigrid & Savina-Rolland, Marie & Travers-Trolet, Morgane & Girardin, Raphaël, 2020. "Improving confidence in complex ecosystem models: The sensitivity analysis of an Atlantis ecosystem model," Ecological Modelling, Elsevier, vol. 431(C).
    9. Chelil, Samy & Henine, Hocine & Chaumont, Cedric & Tournebize, Julien, 2022. "NIT-DRAIN model to simulate nitrate concentrations and leaching in a tile-drained agricultural field," Agricultural Water Management, Elsevier, vol. 271(C).
    10. Lu, Shenglan & Andersen​, Hans Estrup & Thodsen, Hans & Rubæk, Gitte Holton & Trolle, Dennis, 2016. "Extended SWAT model for dissolved reactive phosphorus transport in tile-drained fields and catchments," Agricultural Water Management, Elsevier, vol. 175(C), pages 78-90.
    11. Megrey, Bernard A. & Rose, Kenneth A. & Klumb, Robert A. & Hay, Douglas E. & Werner, Francisco E. & Eslinger, David L. & Smith, S. Lan, 2007. "A bioenergetics-based population dynamics model of Pacific herring (Clupea harengus pallasi) coupled to a lower trophic level nutrient–phytoplankton–zooplankton model: Description, calibration, and se," Ecological Modelling, Elsevier, vol. 202(1), pages 144-164.
    12. Megrey, Bernard A. & Rose, Kenneth A. & Ito, Shin-ichi & Hay, Douglas E. & Werner, Francisco E. & Yamanaka, Yasuhiro & Aita, Maki Noguchi, 2007. "North Pacific basin-scale differences in lower and higher trophic level marine ecosystem responses to climate impacts using a nutrient-phytoplankton–zooplankton model coupled to a fish bioenergetics m," Ecological Modelling, Elsevier, vol. 202(1), pages 196-210.
    13. Malone, R.W. & Kersebaum, K.C. & Kaspar, T.C. & Ma, L. & Jaynes, D.B. & Gillette, K., 2017. "Winter rye as a cover crop reduces nitrate loss to subsurface drainage as simulated by HERMES," Agricultural Water Management, Elsevier, vol. 184(C), pages 156-169.
    14. Werner, Francisco E. & Ito, Shin-Ichi & Megrey, Bernard A. & Kishi, Michio J., 2007. "Synthesis of the NEMURO model studies and future directions of marine ecosystem modeling," Ecological Modelling, Elsevier, vol. 202(1), pages 211-223.
    15. Henine, Hocine & Jeantet, Alexis & Chaumont, Cédric & Chelil, Samy & Lauvernet, Claire & Tournebize, Julien, 2022. "Coupling of a subsurface drainage model with a soil reservoir model to simulate drainage discharge and drain flow start," Agricultural Water Management, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:132:y:2014:i:c:p:10-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.