IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i8d10.1007_s10668-020-01169-z.html
   My bibliography  Save this article

Spatial distribution and landscape impact analysis of quarries and waste dumpsites

Author

Listed:
  • George Mitri

    (University of Balamand)

  • Georgy Nasrallah

    (University of Balamand)

  • Manal Nader

    (University of Balamand)

Abstract

This work aimed to develop an assessment tool that can help local officials and the public understanding the main effects surrounding location of quarrying activities and improper disposal of CDW. The specific objectives were to (1) assess the visual impact of quarries and CDW dumpsites at the landscape level and (2) investigate the effect of land conversion to quarries and CDW dumpsites on water runoff volume. The methodology of work involved digitization of individual quarries and CDW dumpsites using very high-resolution satellite imagery. The volume of exploited material was estimated with the use of a Digital Elevation Model. Geographic Object-Based Image Analysis was employed to assess the state of soil cover on identified sites. Visual impact maps were developed using Geographic Information System analysis. The Natural Resource Conservation Service-Curve Number model was adopted to estimate changes in volume of annual surface water runoff. The assessment resulted in mapping individual quarries (i.e., 1,425 quarries over an area of 61,723,800 m2) and CDW dumpsites (i.e., 219 dumpsites over an area of 5,012,100 m2) showing (1) low to complete absence of vegetation recovery on identified sites, (2) improper location of quarries and large extent of visually polluted landscape and (3) increase in surface water runoff. This work demonstrated the ability of using an operational tool to spatially characterize quarries and CDW dumpsites and their impacts on the landscape in the absence of extensive site-specific datasets. The transferability and replicability of this tool count on systematic use of the investigated geospatial techniques.

Suggested Citation

  • George Mitri & Georgy Nasrallah & Manal Nader, 2021. "Spatial distribution and landscape impact analysis of quarries and waste dumpsites," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12302-12325, August.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:8:d:10.1007_s10668-020-01169-z
    DOI: 10.1007/s10668-020-01169-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-01169-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-01169-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sandra L. Postel & Barton H. Thompson, 2005. "Watershed protection: Capturing the benefits of nature's water supply services," Natural Resources Forum, Blackwell Publishing, vol. 29(2), pages 98-108, May.
    2. Gaudin, Rémi & Celette, Florian & Gary, Christian, 2010. "Contribution of runoff to incomplete off season soil water refilling in a Mediterranean vineyard," Agricultural Water Management, Elsevier, vol. 97(10), pages 1534-1540, October.
    3. Jung, Jae-Woon & Yoon, Kwang-Sik & Choi, Dong-Ho & Lim, Sang-Sun & Choi, Woo-Jung & Choi, Soo-Myung & Lim, Byung-Jin, 2012. "Water management practices and SCS curve numbers of paddy fields equipped with surface drainage pipes," Agricultural Water Management, Elsevier, vol. 110(C), pages 78-83.
    4. Truman, C.C. & Potter, T.L. & Nuti, R.C. & Franklin, D.H. & Bosch, D.D., 2011. "Antecedent water content effects on runoff and sediment yields from two Coastal Plain Ultisols," Agricultural Water Management, Elsevier, vol. 98(8), pages 1189-1196, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elizabeth A. Obeng & Kwame A. Oduro & Beatrice D. Obiri, 2024. "Application of the Theory of Planned Behavior in Predicting US Residents’ Willingness to Pay to Restore Degraded Tropical Rainforest Watersheds," Journal of Sustainable Development, Canadian Center of Science and Education, vol. 12(6), pages 1-62, July.
    2. Kaiwen Chen & Shuang’en Yu & Tao Ma & Jihui Ding & Pingru He & Yao Li & Yan Dai & Guangquan Zeng, 2022. "Modeling the Water and Nitrogen Management Practices in Paddy Fields with HYDRUS-1D," Agriculture, MDPI, vol. 12(7), pages 1-18, June.
    3. Dariusz Młyński & Andrzej Wałęga, 2020. "Identification of the Relationship between Rainfall and the CN Parameter in Western Carpathian Mountain Catchments in Poland," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    4. Gaudin, Rémi & Roux, Sébastien & Tisseyre, Bruno, 2017. "Linking the transpirable soil water content of a vineyard to predawn leaf water potential measurements," Agricultural Water Management, Elsevier, vol. 182(C), pages 13-23.
    5. Liu, Lianhua & Ouyang, Wei & Wang, Yidi & Lian, Zhongmin & Pan, Junting & Liu, Hongbin & Chen, Jingrui & Niu, Shiwei, 2023. "Paddy water managements for diffuse nitrogen and phosphorus pollution control in China: A comprehensive review and emerging prospects," Agricultural Water Management, Elsevier, vol. 277(C).
    6. Celette, Florian & Ripoche, Aude & Gary, Christian, 2010. "WaLIS--A simple model to simulate water partitioning in a crop association: The example of an intercropped vineyard," Agricultural Water Management, Elsevier, vol. 97(11), pages 1749-1759, November.
    7. Agung Budi Supangat & Tyas Mutiara Basuki & Yonky Indrajaya & Ogi Setiawan & Nining Wahyuningrum & Purwanto & Pamungkas Buana Putra & Endang Savitri & Dewi Retna Indrawati & Diah Auliyani & Ryke Nandi, 2023. "Sustainable Management for Healthy and Productive Watersheds in Indonesia," Land, MDPI, vol. 12(11), pages 1-34, October.
    8. Kumar, Suresh & Madhu, M & Singh, Ranjay K & Kaushal, Rajesh & Jyotiprava Dash, Ch. & Gowda, Hombe H.C. & Barla, GW, 2024. "Changes in the value of ecosystem services due to watershed development in India’s Eastern Ghats and incentives for better stewardship," Ecosystem Services, Elsevier, vol. 65(C).
    9. Chunfeng Jia & Baoping Sun & Xinxiao Yu & Xiaohui Yang, 2020. "Analysis of Runoff and Sediment Losses from a Sloped Roadbed under Variable Rainfall Intensities and Vegetation Conditions," Sustainability, MDPI, vol. 12(5), pages 1-11, March.
    10. Veronica Relano & Maria Lourdes Deng Palomares & Daniel Pauly, 2021. "Comparing the Performance of Four Very Large Marine Protected Areas with Different Levels of Protection," Sustainability, MDPI, vol. 13(17), pages 1-18, August.
    11. Jenkins, M.B. & Truman, C.C. & Franklin, D.H. & Potter, T.L. & Bosch, D.D. & Strickland, T.C. & Nuti, R.C., 2014. "Fecal bacterial losses in runoff from conventional and no-till pearl millet fertilized with broiler litter," Agricultural Water Management, Elsevier, vol. 134(C), pages 38-41.
    12. Křeček, Josef & Haigh, Martin, 2019. "Land use policy in headwater catchments," Land Use Policy, Elsevier, vol. 80(C), pages 410-414.
    13. Zheng, Bofu & Guo, Qinghai & Wei, Yuansong & Deng, Hongbing & Ma, Keming & Liu, Junxin & Zhao, Jingzhu & Zhang, Xingshan & Zhao, Yu, 2008. "Water source protection and industrial development in the Shandong Peninsula, China from 1995 to 2004: A case study," Resources, Conservation & Recycling, Elsevier, vol. 52(8), pages 1065-1076.
    14. Křeček, Josef & Palán, Ladislav & Stuchlík, Evžen, 2019. "Impacts of land use policy on the recovery of mountain catchments from acidification," Land Use Policy, Elsevier, vol. 80(C), pages 439-448.
    15. Rasmussen, Laura Vang & Fold, Niels & Olesen, Rasmus Skov & Shackleton, Sheona, 2021. "Socio-economic outcomes of ecological infrastructure investments," Ecosystem Services, Elsevier, vol. 47(C).
    16. Cristini, Hélène & Kauppinen-Räisänen, Hannele, 2020. "Managing the transformation of the global commons into luxuries for all," Journal of Business Research, Elsevier, vol. 116(C), pages 467-473.
    17. Lalisa Duguma & Esther Kamwilu & Peter A Minang & Judith Nzyoka & Kennedy Muthee, 2020. "Ecosystem-Based Approaches to Bioenergy and the Need for Regenerative Supply Options for Africa," Sustainability, MDPI, vol. 12(20), pages 1-22, October.
    18. Roua Amami & Khaled Ibrahimi & Farooq Sher & Paul Milham & Hiba Ghazouani & Sayed Chehaibi & Zahra Hussain & Hafiz M. N. Iqbal, 2021. "Impacts of Different Tillage Practices on Soil Water Infiltration for Sustainable Agriculture," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    19. Dong, Xiaobin & Wang, Xiaowan & Wei, Hejie & Fu, Bojie & Wang, Jijun & Uriarte-Ruiz, Michelle, 2021. "Trade-offs between local farmers' demand for ecosystem services and ecological restoration of the Loess Plateau, China," Ecosystem Services, Elsevier, vol. 49(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:8:d:10.1007_s10668-020-01169-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.