IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i9p1389-1398.html
   My bibliography  Save this article

Numerical assessment of effective evapotranspiration from maize plots to estimate groundwater recharge in lowlands

Author

Listed:
  • Mastrocicco, M.
  • Colombani, N.
  • Salemi, E.
  • Castaldelli, G.

Abstract

To maximize the irrigation efficiency and to protect groundwater from agrochemical pollution, two variables must be known with good accuracy: effective evapotranspiration and infiltration, especially in lowland areas were the run-off is minimal. Three different experimental plots cultivated with maize were equipped with tensiometers and soil moisture probes to monitor every day the water movement in the unsaturated zone. Other relevant parameters of the various soil layers, as hydraulic conductivity and water retention curve, were obtained in laboratory experiments, while boundary conditions, as precipitations, temperature and root growth, were obtained on site. Inverse modeling was performed using HYDRUS-1D to assess the degree of uncertainty on model parameters. Results showed a good model fit of water content and head pressure at various depths, in each site, using Penman-Monteith formula for daily potential evapotranspiration calculation, but poor fit applying the Hargreves and Turk formulas. Best performance of model fit was observed for S-shaped equation employed to simulate the root water-uptake reduction with respect to Feddes equation. The soil parameters uncertainty was limited and remained within analytical errors, thus a robust estimation of cumulative infiltration and evapotranspiration has been derived. This study points out that evapotranspiration is the most important variable in defining groundwater recharge for maize crops in lowlands.

Suggested Citation

  • Mastrocicco, M. & Colombani, N. & Salemi, E. & Castaldelli, G., 2010. "Numerical assessment of effective evapotranspiration from maize plots to estimate groundwater recharge in lowlands," Agricultural Water Management, Elsevier, vol. 97(9), pages 1389-1398, September.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:9:p:1389-1398
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00130-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Panigrahi, B. & Panda, Sudhindra N., 2003. "Field test of a soil water balance simulation model," Agricultural Water Management, Elsevier, vol. 58(3), pages 223-240, February.
    2. Duchemin, B. & Hadria, R. & Erraki, S. & Boulet, G. & Maisongrande, P. & Chehbouni, A. & Escadafal, R. & Ezzahar, J. & Hoedjes, J.C.B. & Kharrou, M.H. & Khabba, S. & Mougenot, B. & Olioso, A. & Rodrig, 2006. "Monitoring wheat phenology and irrigation in Central Morocco: On the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices," Agricultural Water Management, Elsevier, vol. 79(1), pages 1-27, January.
    3. Lenka, S. & Singh, A.K. & Lenka, N.K., 2009. "Water and nitrogen interaction on soil profile water extraction and ET in maize-wheat cropping system," Agricultural Water Management, Elsevier, vol. 96(2), pages 195-207, February.
    4. Gavilan, Pedro & Berengena, Joaquin & Allen, Richard G., 2007. "Measuring versus estimating net radiation and soil heat flux: Impact on Penman-Monteith reference ET estimates in semiarid regions," Agricultural Water Management, Elsevier, vol. 89(3), pages 275-286, May.
    5. Katerji, N. & van Hoorn, J. W. & Hamdy, A. & Mastrorilli, M., 2000. "Salt tolerance classification of crops according to soil salinity and to water stress day index," Agricultural Water Management, Elsevier, vol. 43(1), pages 99-109, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liaqat, Umar Waqas & Awan, Usman Khalid & McCabe, Matthew Francis & Choi, Minha, 2016. "A geo-informatics approach for estimating water resources management components and their interrelationships," Agricultural Water Management, Elsevier, vol. 178(C), pages 89-105.
    2. Nicolò Colombani & Micòl Mastrocicco & Beatrice Giambastiani, 2015. "Predicting Salinization Trends in a Lowland Coastal Aquifer: Comacchio (Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 603-618, January.
    3. Li, Danfeng, 2020. "Quantifying water use and groundwater recharge under flood irrigation in an arid oasis of northwestern China," Agricultural Water Management, Elsevier, vol. 240(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al Zayed, Islam Sabry & Elagib, Nadir Ahmed & Ribbe, Lars & Heinrich, Jürgen, 2016. "Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study," Agricultural Water Management, Elsevier, vol. 177(C), pages 66-76.
    2. Nyakudya, Innocent Wadzanayi & Stroosnijder, Leo & Nyagumbo, Isaiah, 2014. "Infiltration and planting pits for improved water management and maize yield in semi-arid Zimbabwe," Agricultural Water Management, Elsevier, vol. 141(C), pages 30-46.
    3. Elfarkh, Jamal & Simonneaux, Vincent & Jarlan, Lionel & Ezzahar, Jamal & Boulet, Gilles & Chakir, Adnane & Er-Raki, Salah, 2022. "Evapotranspiration estimates in a traditional irrigated area in semi-arid Mediterranean. Comparison of four remote sensing-based models," Agricultural Water Management, Elsevier, vol. 270(C).
    4. Althoff, Daniel & Filgueiras, Roberto & Dias, Santos Henrique Brant & Rodrigues, Lineu Neiva, 2019. "Impact of sum-of-hourly and daily timesteps in the computations of reference evapotranspiration across the Brazilian territory," Agricultural Water Management, Elsevier, vol. 226(C).
    5. Battude, Marjorie & Al Bitar, Ahmad & Brut, Aurore & Tallec, Tiphaine & Huc, Mireille & Cros, Jérôme & Weber, Jean-Jacques & Lhuissier, Ludovic & Simonneaux, Vincent & Demarez, Valérie, 2017. "Modeling water needs and total irrigation depths of maize crop in the south west of France using high spatial and temporal resolution satellite imagery," Agricultural Water Management, Elsevier, vol. 189(C), pages 123-136.
    6. Escarabajal-Henarejos, D. & Molina-Martínez, J.M. & Fernández-Pacheco, D.G. & García-Mateos, G., 2015. "Methodology for obtaining prediction models of the root depth of lettuce for its application in irrigation automation," Agricultural Water Management, Elsevier, vol. 151(C), pages 167-173.
    7. Shao, Guomin & Han, Wenting & Zhang, Huihui & Liu, Shouyang & Wang, Yi & Zhang, Liyuan & Cui, Xin, 2021. "Mapping maize crop coefficient Kc using random forest algorithm based on leaf area index and UAV-based multispectral vegetation indices," Agricultural Water Management, Elsevier, vol. 252(C).
    8. Mohamed Kharrou & Michel Le Page & Ahmed Chehbouni & Vincent Simonneaux & Salah Er-Raki & Lionel Jarlan & Lahcen Ouzine & Said Khabba & Ghani Chehbouni, 2013. "Assessment of Equity and Adequacy of Water Delivery in Irrigation Systems Using Remote Sensing-Based Indicators in Semi-Arid Region, Morocco," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4697-4714, October.
    9. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Martyniak, Ludwika, 2008. "Response of spring cereals to a deficit of atmospheric precipitation in the particular stages of plant growth and development," Agricultural Water Management, Elsevier, vol. 95(3), pages 171-178, March.
    11. Elbeltagi, Ahmed & Deng, Jinsong & Wang, Ke & Malik, Anurag & Maroufpoor, Saman, 2020. "Modeling long-term dynamics of crop evapotranspiration using deep learning in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 241(C).
    12. Aouade, G. & Ezzahar, J. & Amenzou, N. & Er-Raki, S. & Benkaddour, A. & Khabba, S. & Jarlan, L., 2016. "Combining stable isotopes, Eddy Covariance system and meteorological measurements for partitioning evapotranspiration, of winter wheat, into soil evaporation and plant transpiration in a semi-arid reg," Agricultural Water Management, Elsevier, vol. 177(C), pages 181-192.
    13. Ma, Ying & Feng, Shaoyuan & Song, Xianfang, 2013. "A root zone model for estimating soil water balance and crop yield responses to deficit irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 127(C), pages 13-24.
    14. Ouaadi, Nadia & Jarlan, Lionel & Khabba, Saïd & Le Page, Michel & Chakir, Adnane & Er-Raki, Salah & Frison, Pierre-Louis, 2023. "Are the C-band backscattering coefficient and interferometric coherence suitable substitutes of NDVI for the monitoring of the FAO-56 crop coefficient?," Agricultural Water Management, Elsevier, vol. 282(C).
    15. Wang, Qingming & Huo, Zailin & Zhang, Liudong & Wang, Jianhua & Zhao, Yong, 2016. "Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid regions of China," Agricultural Water Management, Elsevier, vol. 163(C), pages 125-138.
    16. Ji, Xi-Bin & Kang, Er-Si & Chen, Ren-Sheng & Zhao, Wen-Zhi & Zhang, Zhi-Hui & Jin, Bo-Wen, 2007. "A mathematical model for simulating water balances in cropped sandy soil with conventional flood irrigation applied," Agricultural Water Management, Elsevier, vol. 87(3), pages 337-346, February.
    17. Toumi, J. & Er-Raki, S. & Ezzahar, J. & Khabba, S. & Jarlan, L. & Chehbouni, A., 2016. "Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management," Agricultural Water Management, Elsevier, vol. 163(C), pages 219-235.
    18. Jianqiang Deng & Xiaomin Chen & Zhenjie Du & Yong Zhang, 2011. "Soil Water Simulation and Predication Using Stochastic Models Based on LS-SVM for Red Soil Region of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2823-2836, September.
    19. Campos, Isidro & Neale, Christopher M.U. & Calera, Alfonso & Balbontín, Claudio & González-Piqueras, Jose, 2010. "Assessing satellite-based basal crop coefficients for irrigated grapes (Vitis vinifera L.)," Agricultural Water Management, Elsevier, vol. 98(1), pages 45-54, December.
    20. Hao, Baozhen & Xue, Qingwu & Marek, Thomas H. & Jessup, Kirk E. & Hou, Xiaobo & Xu, Wenwei & Bynum, Edsel D. & Bean, Brent W., 2015. "Soil water extraction, water use, and grain yield by drought-tolerant maize on the Texas High Plains," Agricultural Water Management, Elsevier, vol. 155(C), pages 11-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:9:p:1389-1398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.