IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v58y2003i3p223-240.html
   My bibliography  Save this article

Field test of a soil water balance simulation model

Author

Listed:
  • Panigrahi, B.
  • Panda, Sudhindra N.

Abstract

No abstract is available for this item.

Suggested Citation

  • Panigrahi, B. & Panda, Sudhindra N., 2003. "Field test of a soil water balance simulation model," Agricultural Water Management, Elsevier, vol. 58(3), pages 223-240, February.
  • Handle: RePEc:eee:agiwat:v:58:y:2003:i:3:p:223-240
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(02)00082-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George, B. A. & Shende, S. A. & Raghuwanshi, N. S., 2000. "Development and testing of an irrigation scheduling model," Agricultural Water Management, Elsevier, vol. 46(2), pages 121-136, December.
    2. Hajilal, M. S. & Rao, N. H. & Sarma, P. B. S., 1998. "Planning intraseasonal water requirements in irrigation projects," Agricultural Water Management, Elsevier, vol. 37(2), pages 163-182, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shao, Guomin & Han, Wenting & Zhang, Huihui & Zhang, Liyuan & Wang, Yi & Zhang, Yu, 2023. "Prediction of maize crop coefficient from UAV multisensor remote sensing using machine learning methods," Agricultural Water Management, Elsevier, vol. 276(C).
    2. Mastrocicco, M. & Colombani, N. & Salemi, E. & Castaldelli, G., 2010. "Numerical assessment of effective evapotranspiration from maize plots to estimate groundwater recharge in lowlands," Agricultural Water Management, Elsevier, vol. 97(9), pages 1389-1398, September.
    3. Liu, Wei & Fu, Qiang & Meng, Jun & Li, Tianxiao & Cheng, Kun, 2019. "Simulation and analysis of return flow at the field scale in the northern rice irrigation area of China," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    4. Nyakudya, Innocent Wadzanayi & Stroosnijder, Leo & Nyagumbo, Isaiah, 2014. "Infiltration and planting pits for improved water management and maize yield in semi-arid Zimbabwe," Agricultural Water Management, Elsevier, vol. 141(C), pages 30-46.
    5. Ma, Ying & Feng, Shaoyuan & Song, Xianfang, 2013. "A root zone model for estimating soil water balance and crop yield responses to deficit irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 127(C), pages 13-24.
    6. Mandal, Uttam Kumar & Victor, U.S. & Srivastava, N.N. & Sharma, K.L. & Ramesh, V. & Vanaja, M. & Korwar, G.R. & Ramakrishna, Y.S., 2007. "Estimating yield of sorghum using root zone water balance model and spectral characteristics of crop in a dryland Alfisol," Agricultural Water Management, Elsevier, vol. 87(3), pages 315-327, February.
    7. Mao, Wei & Yang, Jinzhong & Zhu, Yan & Ye, Ming & Wu, Jingwei, 2017. "Loosely coupled SaltMod for simulating groundwater and salt dynamics under well-canal conjunctive irrigation in semi-arid areas," Agricultural Water Management, Elsevier, vol. 192(C), pages 209-220.
    8. Ji, Xi-Bin & Kang, Er-Si & Chen, Ren-Sheng & Zhao, Wen-Zhi & Zhang, Zhi-Hui & Jin, Bo-Wen, 2007. "A mathematical model for simulating water balances in cropped sandy soil with conventional flood irrigation applied," Agricultural Water Management, Elsevier, vol. 87(3), pages 337-346, February.
    9. Hong, Minki & Lee, Sang-Hyun & Lee, Seung-Jae & Choi, Jin-Yong, 2021. "Application of high-resolution meteorological data from NCAM-WRF to characterize agricultural drought in small-scale farmlands based on soil moisture deficit," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Jianqiang Deng & Xiaomin Chen & Zhenjie Du & Yong Zhang, 2011. "Soil Water Simulation and Predication Using Stochastic Models Based on LS-SVM for Red Soil Region of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2823-2836, September.
    11. Liu, Y. & Pereira, L.S. & Fernando, R.M., 2006. "Fluxes through the bottom boundary of the root zone in silty soils: Parametric approaches to estimate groundwater contribution and percolation," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 27-40, July.
    12. Pereira, L.S. & Paredes, P. & Jovanovic, N., 2020. "Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach," Agricultural Water Management, Elsevier, vol. 241(C).
    13. Escarabajal-Henarejos, D. & Molina-Martínez, J.M. & Fernández-Pacheco, D.G. & García-Mateos, G., 2015. "Methodology for obtaining prediction models of the root depth of lettuce for its application in irrigation automation," Agricultural Water Management, Elsevier, vol. 151(C), pages 167-173.
    14. Nishat, S. & Guo, Y. & Baetz, B.W., 2007. "Development of a simplified continuous simulation model for investigating long-term soil moisture fluctuations," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 53-63, August.
    15. Hong, Eun-Mi & Nam, Won-Ho & Choi, Jin-Yong & Pachepsky, Yakov A., 2016. "Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea," Agricultural Water Management, Elsevier, vol. 165(C), pages 163-180.
    16. Leonardo D. Garcia & Camilo Lozoya & Antonio Favela-Contreras & Emanuele Giorgi, 2023. "A Comparative Analysis between Heuristic and Data-Driven Water Management Control for Precision Agriculture Irrigation," Sustainability, MDPI, vol. 15(14), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarr, Benoit & Lecoeur, Jeremie & Clouvel, Pascal, 2004. "Irrigation scheduling of confectionery groundnut (Arachis hypogeaea L.) in Senegal using a simple water balance model," Agricultural Water Management, Elsevier, vol. 67(3), pages 201-220, July.
    2. Mandal, Uttam Kumar & Victor, U.S. & Srivastava, N.N. & Sharma, K.L. & Ramesh, V. & Vanaja, M. & Korwar, G.R. & Ramakrishna, Y.S., 2007. "Estimating yield of sorghum using root zone water balance model and spectral characteristics of crop in a dryland Alfisol," Agricultural Water Management, Elsevier, vol. 87(3), pages 315-327, February.
    3. Fan, Yubing & McCann, Laura M., 2017. "Farmers’ Adoption of Pressure Irrigation Systems and Scientific Scheduling Practices: An Application of Multilevel Models," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258458, Agricultural and Applied Economics Association.
    4. Satti, Sudheer R. & Jacobs, Jennifer M., 2004. "A GIS-based model to estimate the regionally distributed drought water demand," Agricultural Water Management, Elsevier, vol. 66(1), pages 1-13, April.
    5. M. Rowshon & M. Amin & T. Lee & A. Shariff, 2009. "GIS-Integrated Rice Irrigation Management Information System for a River-Fed Scheme," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 2841-2866, November.
    6. Gloaguen, Romain M. & Rowland, Diane L. & Brym, Zachary T. & Wilson, Chris. H. & Chun, Hyen Chung & Langham, Ray, 2021. "A METHOD FOR DEVELOPING IRRIGATION DECISION SUPPORT SYSTEMS de novo: EXAMPLE OF SESAME (Sesamum indicum L.) A KNOWN DROUGHT TOLERANT SPECIES," Agricultural Water Management, Elsevier, vol. 243(C).
    7. George, Biju A. & Raghuwanshi, N. S. & Singh, R., 2004. "Development and testing of a GIS integrated irrigation scheduling model," Agricultural Water Management, Elsevier, vol. 66(3), pages 221-237, May.
    8. Shang, Songhao & Li, Xichun & Mao, Xiaomin & Lei, Zhidong, 2004. "Simulation of water dynamics and irrigation scheduling for winter wheat and maize in seasonal frost areas," Agricultural Water Management, Elsevier, vol. 68(2), pages 117-133, August.
    9. Chowdary, V. M. & Rao, N. H. & Sarma, P. B. S., 2003. "GIS-based decision support system for groundwater assessment in large irrigation project areas," Agricultural Water Management, Elsevier, vol. 62(3), pages 229-252, October.
    10. Chowdary, V.M. & Rao, N.H. & Sarma, P.B.S., 2005. "Decision support framework for assessment of non-point-source pollution of groundwater in large irrigation projects," Agricultural Water Management, Elsevier, vol. 75(3), pages 194-225, July.
    11. Hajilal, M. S. & Rao, N. H. & Sarma, P. B. S., 1998. "Real time operation of reservoir based canal irrigation systems," Agricultural Water Management, Elsevier, vol. 38(2), pages 103-122, December.
    12. B. Panigrahi & Sudhindra Panda & A. Agrawal, 2005. "Water Balance Simulation and Economic Analysis for Optimal Size of On-Farm Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(3), pages 233-250, June.
    13. Shang, Songhao & Mao, Xiaomin, 2006. "Application of a simulation based optimization model for winter wheat irrigation scheduling in North China," Agricultural Water Management, Elsevier, vol. 85(3), pages 314-322, October.
    14. Laishram Kanta Singh & Madan K. Jha & V. M. Chowdary, 2021. "Evaluation of water demand and supply under varying meteorological conditions in Eastern India and mitigation strategies for sustainable agricultural production," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1264-1291, February.
    15. Prashant K. Srivastava, 2017. "Satellite Soil Moisture: Review of Theory and Applications in Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3161-3176, August.
    16. Hasnain, Saquibul & Singh, Ajai, 2022. "Development of Electronic Wetting Front Detector for irrigation scheduling," Agricultural Water Management, Elsevier, vol. 274(C).
    17. Monika MARKOVIĆ & Vilim FILIPOVIĆ & Tarzan LEGOVIĆ & Marko JOSIPOVIĆ & Vjekoslav TADIĆ, 2015. "Evaluation of different soil water potential by field capacity threshold in combination with a triggered irrigation module," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 10(3), pages 164-171.
    18. Pawan S. Wable & V. M. Chowdary & S. N. Panda & Sirisha Adamala & C. S. Jha, 2021. "Potential and net recharge assessment in paddy dominated Hirakud irrigation command of eastern India using water balance and geospatial approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10869-10891, July.
    19. Lankford, Bruce A., 2004. "Resource-centred thinking in river basins; should we revoke the crop water requirement approach to irrigation planning?," Agricultural Water Management, Elsevier, vol. 68(1), pages 33-46, July.
    20. Fan, Yubing & Massey, Raymond E. & Park, Seong C., 2017. "Multicrop Production Decisions and Economic Irrigation Water Use Efficiency: Effects of Water Costs, Pressure Irrigation Adoption and Climate Determinants," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258561, Agricultural and Applied Economics Association.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:58:y:2003:i:3:p:223-240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.