IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i2p603-618.html
   My bibliography  Save this article

Predicting Salinization Trends in a Lowland Coastal Aquifer: Comacchio (Italy)

Author

Listed:
  • Nicolò Colombani
  • Micòl Mastrocicco
  • Beatrice Giambastiani

Abstract

The coastal aquifer salinization is an urgent problem caused by groundwater resources overexploitation and climate change. This phenomenon is enhanced in areas lying below the sea level, like the polders in the Netherlands or the Po River lowland in Italy. In these reclaimed lands the saltwater intrusion is usually controlled by a network of irrigation canals that supplies freshwater to the shallow aquifer, maintaining soil salinity at acceptable levels. The 2012 was dramatic in terms of agricultural water supply, since the Po River plain experienced a prolonged drought. Despite this, continuous monitoring of piezometric heads and total dissolved solids (TDS) near a canal (Canale della Gronda) demonstrated that freshening was occurring in the shallow portion (first 4 m) of the unconfined aquifer, while the bottom part was characterized by elevated relic salinity. The two-dimensional model SEAWAT was calibrated using piezometric heads and TDS depth profiles measured along a transect perpendicular to the canal. The calibrated model was then used to predict the behaviour of this cross section using a multiple scenario approach: increase in evapotranspiration induced by temperature increase; increase in the frequency of extreme high rainfall events; extreme drought conditions; and canal dewatering due to salinization of the water courses. Moreover, for each scenario, two sub-scenarios were run to account for projected sea level rise. The first three scenarios had only a minor influence on the aquifer salinization rate, while the fourth one predicted serious upward flux of the high salinity groundwater actually residing in the bottom of the unconfined aquifer. The scenarios quantified the possible future effects on groundwater salinization and could be useful to find adaptation strategies to manage the water resources of this and similar areas. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Nicolò Colombani & Micòl Mastrocicco & Beatrice Giambastiani, 2015. "Predicting Salinization Trends in a Lowland Coastal Aquifer: Comacchio (Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 603-618, January.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:2:p:603-618
    DOI: 10.1007/s11269-014-0795-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0795-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0795-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Mastrocicco & B. Giambastiani & P. Severi & N. Colombani, 2012. "The Importance of Data Acquisition Techniques in Saltwater Intrusion Monitoring," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 2851-2866, August.
    2. Mastrocicco, M. & Colombani, N. & Salemi, E. & Castaldelli, G., 2010. "Numerical assessment of effective evapotranspiration from maize plots to estimate groundwater recharge in lowlands," Agricultural Water Management, Elsevier, vol. 97(9), pages 1389-1398, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valeria Medoro & Giacomo Ferretti & Giulio Galamini & Annalisa Rotondi & Lucia Morrone & Barbara Faccini & Massimo Coltorti, 2022. "Reducing Nitrogen Fertilization in Olive Growing by the Use of Natural Chabazite-Zeolitite as Soil Improver," Land, MDPI, vol. 11(9), pages 1-20, September.
    2. Amirhossein Hassani & Adisa Azapagic & Nima Shokri, 2021. "Global predictions of primary soil salinization under changing climate in the 21st century," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    3. Aadhityaa Mohanavelu & Sujay Raghavendra Naganna & Nadhir Al-Ansari, 2021. "Irrigation Induced Salinity and Sodicity Hazards on Soil and Groundwater: An Overview of Its Causes, Impacts and Mitigation Strategies," Agriculture, MDPI, vol. 11(10), pages 1-17, October.
    4. Reca, J. & Trillo, C. & Sánchez, J.A. & Martínez, J. & Valera, D., 2018. "Optimization model for on-farm irrigation management of Mediterranean greenhouse crops using desalinated and saline water from different sources," Agricultural Systems, Elsevier, vol. 166(C), pages 173-183.
    5. Phogat, V. & Mallants, Dirk & Cox, J.W. & Šimůnek, J. & Oliver, D.P. & Awad, J., 2020. "Management of soil salinity associated with irrigation of protected crops," Agricultural Water Management, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jialiang Cai & Thomas Taute & Michael Schneider, 2015. "Recommendations of Controlling Saltwater Intrusion in an Inland Aquifer for Drinking-Water Supply at a Certain Waterworks Site in Berlin (Germany)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2221-2232, May.
    2. Li, Danfeng, 2020. "Quantifying water use and groundwater recharge under flood irrigation in an arid oasis of northwestern China," Agricultural Water Management, Elsevier, vol. 240(C).
    3. N. Colombani & A. Osti & G. Volta & M. Mastrocicco, 2016. "Impact of Climate Change on Salinization of Coastal Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2483-2496, May.
    4. Liaqat, Umar Waqas & Awan, Usman Khalid & McCabe, Matthew Francis & Choi, Minha, 2016. "A geo-informatics approach for estimating water resources management components and their interrelationships," Agricultural Water Management, Elsevier, vol. 178(C), pages 89-105.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:2:p:603-618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.