IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v141y2014icp30-46.html
   My bibliography  Save this article

Infiltration and planting pits for improved water management and maize yield in semi-arid Zimbabwe

Author

Listed:
  • Nyakudya, Innocent Wadzanayi
  • Stroosnijder, Leo
  • Nyagumbo, Isaiah

Abstract

Realising that rainwater harvesting (RWH) improves crop productivity, smallholder farmers in semi-arid Zimbabwe modified contour ridges traditionally used for rainwater management by digging infiltration pits inside contour ridge channels in order to retain more water in crop fields. However, scientific studies on crop yield benefits of infiltration pits have not been conclusive. Combining field-edge RWH methods such as contour ridges with infiltration pits with in-field practices may enhance crop yield benefits. Thus, the objective of the study was to assess soil moisture and maize yield improvement of combining infiltration and planting pits. Field experiments were conducted in Rushinga, Zimbabwe for three seasons at three sites using a split-plot design: main-plot factor, field-edge rainwater management method (RWMM); and split-plot factor, tillage method. Soil moisture content was measured weekly using gravimetric and Time Domain Reflectometry (TDR) methods. A household and field survey to establish farmers’ perceptions, typology and availability of field-edge RWMM was conducted. In order to share experiences and enhance stakeholders’ learning, field days were held. Lateral movement of soil water was measured up to 2m downslope from infiltration pits, hence infiltration pits did not improve maize yield and soil moisture content in the cropping area. Maize yield (kgha−1) was 45% higher under conventional tillage (2697) than planting pits (1852) but the yield gap decreased from 90 to 30% in the first and third year respectively. The value of infiltration pits is in reducing soil erosion by water and growing high value horticultural crops inside and close to pits, a view shared by host farmers and other stakeholders. Planting pits are an option for farmers without access to draught power and a fall-back method. Research is required to determine soil moisture, maize yield benefits and waterlogging risk in fields with underlying impermeable layers that enhance lateral flow of water.

Suggested Citation

  • Nyakudya, Innocent Wadzanayi & Stroosnijder, Leo & Nyagumbo, Isaiah, 2014. "Infiltration and planting pits for improved water management and maize yield in semi-arid Zimbabwe," Agricultural Water Management, Elsevier, vol. 141(C), pages 30-46.
  • Handle: RePEc:eee:agiwat:v:141:y:2014:i:c:p:30-46
    DOI: 10.1016/j.agwat.2014.04.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377414001218
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2014.04.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Panigrahi, B. & Panda, Sudhindra N., 2003. "Field test of a soil water balance simulation model," Agricultural Water Management, Elsevier, vol. 58(3), pages 223-240, February.
    2. Bouman, B. A.M., 2007. "A conceptual framework for the improvement of crop water productivity at different spatial scales," Agricultural Systems, Elsevier, vol. 93(1-3), pages 43-60, March.
    3. Wiyo, K. A. & Kasomekera, Z. M. & Feyen, J., 2000. "Effect of tied-ridging on soil water status of a maize crop under Malawi conditions," Agricultural Water Management, Elsevier, vol. 45(2), pages 101-125, July.
    4. Nyakudya, I.W. & Stroosnijder, L., 2011. "Water management options based on rainfall analysis for rainfed maize (Zea mays L.) production in Rushinga district, Zimbabwe," Agricultural Water Management, Elsevier, vol. 98(10), pages 1649-1659, August.
    5. Kinsey, Bill & Burger, Kees & Gunning, Jan Willem, 1998. "Coping with drought in Zimbabwe: Survey evidence on responses of rural households to risk," World Development, Elsevier, vol. 26(1), pages 89-110, January.
    6. Giller, Ken E. & Rowe, Ed C. & de Ridder, Nico & van Keulen, Herman, 2006. "Resource use dynamics and interactions in the tropics: Scaling up in space and time," Agricultural Systems, Elsevier, vol. 88(1), pages 8-27, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kun Cheng & Qiang Fu & Tianxiao Li & Qiuxiang Jiang & Wei Liu, 2015. "Regional food security risk assessment under the coordinated development of water resources," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 603-619, August.
    2. Wolka, Kebede & Mulder, Jan & Biazin, Birhanu, 2018. "Effects of soil and water conservation techniques on crop yield, runoff and soil loss in Sub-Saharan Africa: A review," Agricultural Water Management, Elsevier, vol. 207(C), pages 67-79.
    3. Nyakudya, Innocent Wadzanayi & Stroosnijder, Leo, 2014. "Effect of rooting depth, plant density and planting date on maize (Zea mays L.) yield and water use efficiency in semi-arid Zimbabwe: Modelling with AquaCrop," Agricultural Water Management, Elsevier, vol. 146(C), pages 280-296.
    4. Cecilia M. Onyango & Justine M. Nyaga & Johanna Wetterlind & Mats Söderström & Kristin Piikki, 2021. "Precision Agriculture for Resource Use Efficiency in Smallholder Farming Systems in Sub-Saharan Africa: A Systematic Review," Sustainability, MDPI, vol. 13(3), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edgar Muhoyi & Josue Mbonigaba, 2022. "Stakeholder consultations on small-scale irrigation schemes’ constraints in Zimbabwe," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13198-13217, November.
    2. Nyakudya, Innocent Wadzanayi & Stroosnijder, Leo, 2014. "Effect of rooting depth, plant density and planting date on maize (Zea mays L.) yield and water use efficiency in semi-arid Zimbabwe: Modelling with AquaCrop," Agricultural Water Management, Elsevier, vol. 146(C), pages 280-296.
    3. Jin, Ling & Chen, Kevin Z. & Yu, Bingxin & Filipski, Mateusz, 2015. "Farmers' Coping Strategies against an Aggregate Shock: Evidence from the 2008 Sichuan Earthquake," 2015 Conference, August 9-14, 2015, Milan, Italy 211814, International Association of Agricultural Economists.
    4. Andersson, Jafet C.M. & Zehnder, Alexander J.B. & Rockström, Johan & Yang, Hong, 2011. "Potential impacts of water harvesting and ecological sanitation on crop yield, evaporation and river flow regimes in the Thukela River basin, South Africa," Agricultural Water Management, Elsevier, vol. 98(7), pages 1113-1124, May.
    5. repec:ags:ijag24:346816 is not listed on IDEAS
    6. Janna Frischen & Isabel Meza & Daniel Rupp & Katharina Wietler & Michael Hagenlocher, 2020. "Drought Risk to Agricultural Systems in Zimbabwe: A Spatial Analysis of Hazard, Exposure, and Vulnerability," Sustainability, MDPI, vol. 12(3), pages 1-23, January.
    7. Holden , Stein & Fischer, Monica, 2015. "Can Adoption of Improved Maize Varieties Help Smallholder Farmers Adapt to Drought? Evidence from Malawi," CLTS Working Papers 1/15, Norwegian University of Life Sciences, Centre for Land Tenure Studies, revised 11 Oct 2019.
    8. Santos, Florence & Fletschner, Diana & Savath, Vivien & Peterman, Amber, 2014. "Can Government-Allocated Land Contribute to Food Security? Intrahousehold Analysis of West Bengal’s Microplot Allocation Program," World Development, Elsevier, vol. 64(C), pages 860-872.
    9. Kusunose, Yoko & Lybbert, Travis J., 2014. "Coping with Drought by Adjusting Land Tenancy Contracts: A Model and Evidence from Rural Morocco," World Development, Elsevier, vol. 61(C), pages 114-126.
    10. Bridget. B. Umar & Jens. B. Aune & Fred. H. Johnsen & Obed. I. Lungu, 2011. "Options for Improving Smallholder Conservation Agriculture in Zambia," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 3(3), pages 1-50, September.
    11. World Bank, 2001. "Risk Management in South Asia : A Poverty Focused Approach," World Bank Publications - Reports 15449, The World Bank Group.
    12. Arouri, Mohamed & Nguyen, Cuong & Youssef, Adel Ben, 2015. "Natural Disasters, Household Welfare, and Resilience: Evidence from Rural Vietnam," World Development, Elsevier, vol. 70(C), pages 59-77.
    13. Escarabajal-Henarejos, D. & Molina-Martínez, J.M. & Fernández-Pacheco, D.G. & García-Mateos, G., 2015. "Methodology for obtaining prediction models of the root depth of lettuce for its application in irrigation automation," Agricultural Water Management, Elsevier, vol. 151(C), pages 167-173.
    14. Ndung’u, M. & Mugwe, J.N. & Mucheru-Muna, M.W. & Ngetich, F.K. & Mairura, F.S. & Mugendi, D.N., 2023. "Tied-ridging and soil inputs enhance small-scale maize productivity and profitability under erratic rainfall conditions in central Kenya," Agricultural Water Management, Elsevier, vol. 286(C).
    15. Berrueta, Cecilia & Giménez, Gustavo & Dogliotti, Santiago, 2021. "Scaling up from crop to farm level: Co-innovation framework to improve vegetable farm systems sustainability," Agricultural Systems, Elsevier, vol. 189(C).
    16. Rufino, M.C. & Dury, J. & Tittonell, P. & van Wijk, M.T. & Herrero, M. & Zingore, S. & Mapfumo, P. & Giller, K.E., 2011. "Competing use of organic resources, village-level interactions between farm types and climate variability in a communal area of NE Zimbabwe," Agricultural Systems, Elsevier, vol. 104(2), pages 175-190, February.
    17. Kazianga, Harounan & Udry, Christopher, 2006. "Consumption smoothing? Livestock, insurance and drought in rural Burkina Faso," Journal of Development Economics, Elsevier, vol. 79(2), pages 413-446, April.
    18. Hoogeveen, H. & van der Klaauw, B. & van Lomwel, A.G.C., 1970. "On the timing of marriage, cattle and weather shocks," Other publications TiSEM b204a595-6426-4108-a166-2, Tilburg University, School of Economics and Management.
    19. Giller, Ken E. & Andersson, Jens & Delaune, Thomas & Silva, João Vasco & Descheemaeker, Katrien & van de Ven, Gerrie & Schut, Antonius G.T. & van Wijk, Mark & Hammond, Jim & Hochman, Zvi & Taulya, God, 2022. "IFAD Research Series 83: The future of farming: who will produce our food?," IFAD Research Series 322005, International Fund for Agricultural Development (IFAD).
    20. Shao, Guangcheng & Cui, Jintao & Yu, Shuang’en & Lu, Bin & Brian, Boman J. & Ding, Jihui & She, Dongli, 2015. "Impacts of controlled irrigation and drainage on the yield and physiological attributes of rice," Agricultural Water Management, Elsevier, vol. 149(C), pages 156-165.
    21. Cliff Zinyemba & Emma Archer & Hanna-Andrea Rother, 2020. "Climate Change, Pesticides and Health: Considering the Risks and Opportunities of Adaptation for Zimbabwean Smallholder Cotton Growers," IJERPH, MDPI, vol. 18(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:141:y:2014:i:c:p:30-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.