IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v178y2016icp89-105.html
   My bibliography  Save this article

A geo-informatics approach for estimating water resources management components and their interrelationships

Author

Listed:
  • Liaqat, Umar Waqas
  • Awan, Usman Khalid
  • McCabe, Matthew Francis
  • Choi, Minha

Abstract

A remote sensing based geo-informatics approach was developed to estimate water resources management (WRM) components across a large irrigation scheme in the Indus Basin of Pakistan. The approach provides a generalized framework for estimating a range of key water management variables and provides a management tool for the sustainable operation of similar schemes globally. A focus on the use of satellite data allowed for the quantification of relationships across a range of spatial and temporal scales. Variables including actual and crop evapotranspiration, net and gross irrigation, net and gross groundwater use, groundwater recharge, net groundwater recharge, were estimated and then their interrelationships explored across the Hakra Canal command area. Spatially distributed remotely sensed estimates of actual evapotranspiration (ETa) rates were determined using the Surface Energy Balance System (SEBS) model and evaluated against ground-based evaporation calculated from the advection-aridity method. Analysis of ETa simulations across two cropping season, referred to as Kharif and Rabi, yielded Pearson correlation (R) values of 0.69 and 0.84, Nash-Sutcliffe criterion (NSE) of 0.28 and 0.63, percentage bias of −3.85% and 10.6% and root mean squared error (RMSE) of 10.6mm and 12.21mm for each season, respectively. For the period of study between 2008 and 2014, it was estimated that an average of 0.63mmday−1 water was supplied through canal irrigation against a crop water demand of 3.81mmday−1. Approximately 1.86mmday−1 groundwater abstraction was estimated in the region, which contributed to fulfil the gap between crop water demand and canal water supply. Importantly, the combined canal, groundwater and rainfall sources of water only met 70% of the crop water requirements. As such, the difference between recharge and discharge showed that groundwater depletion was around −115mmyear−1 during the six year study period. Analysis indicated that monthly changes in ETa were strongly correlated (R=0.94) with groundwater abstraction and rainfall, with the strength of this relationship significantly (p<0.01 and 0.05) impacted by cropping seasons and land use practices. Similarly, the net groundwater recharge showed a good positive correlation (R) of 0.72 with rainfall during Kharif, and a correlation of 0.75 with canal irrigation during Rabi, at a significance level of p<0.01. Overall, the results provide insight into the interrelationships between key WRM components and the variation of these through time, offering information to improve the management and strategic planning of available water resources in this region.

Suggested Citation

  • Liaqat, Umar Waqas & Awan, Usman Khalid & McCabe, Matthew Francis & Choi, Minha, 2016. "A geo-informatics approach for estimating water resources management components and their interrelationships," Agricultural Water Management, Elsevier, vol. 178(C), pages 89-105.
  • Handle: RePEc:eee:agiwat:v:178:y:2016:i:c:p:89-105
    DOI: 10.1016/j.agwat.2016.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741630347X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.09.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Winston Yu & Yi-Chen Yang & Andre Savitsky & Donald Alford & Casey Brown & James Wescoat & Dario Debowicz & Sherman Robinson, 2013. "Indus Basin of Pakistan : Impacts of Climate Risks on Water and Agriculture," World Bank Publications - Books, The World Bank Group, number 13834.
    2. Ullah, M. K., 2001. "Spatial distribution of reference and potential evapotranspiration across the Indus Basin Irrigation Systems," IWMI Working Papers H029426, International Water Management Institute.
    3. Yuei-An Liou & Sanjib Kumar Kar, 2014. "Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms—A Review," Energies, MDPI, vol. 7(5), pages 1-29, April.
    4. Mastrocicco, M. & Colombani, N. & Salemi, E. & Castaldelli, G., 2010. "Numerical assessment of effective evapotranspiration from maize plots to estimate groundwater recharge in lowlands," Agricultural Water Management, Elsevier, vol. 97(9), pages 1389-1398, September.
    5. Anuraga, T.S. & Ruiz, L. & Kumar, M.S. Mohan & Sekhar, M. & Leijnse, A., 2006. "Estimating groundwater recharge using land use and soil data: A case study in South India," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 65-76, July.
    6. Chowdary, V.M. & Chandran, R. Vinu & Neeti, N. & Bothale, R.V. & Srivastava, Y.K. & Ingle, P. & Ramakrishnan, D. & Dutta, D. & Jeyaram, A. & Sharma, J.R. & Singh, Ravindra, 2008. "Assessment of surface and sub-surface waterlogged areas in irrigation command areas of Bihar state using remote sensing and GIS," Agricultural Water Management, Elsevier, vol. 95(7), pages 754-766, July.
    7. Santiago Castaño & David Sanz & Juan Gómez-Alday, 2010. "Methodology for Quantifying Groundwater Abstractions for Agriculture via Remote Sensing and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(4), pages 795-814, March.
    8. Ahmad, M.D. & Turral, H. & Nazeer, A., 2009. "Diagnosing irrigation performance and water productivity through satellite remote sensing and secondary data in a large irrigation system of Pakistan," Agricultural Water Management, Elsevier, vol. 96(4), pages 551-564, April.
    9. Kirby, J.M. & Ahmad, M.D. & Mainuddin, M. & Palash, W. & Quadir, M.E. & Shah-Newaz, S.M. & Hossain, M.M., 2015. "The impact of irrigation development on regional groundwater resources in Bangladesh," Agricultural Water Management, Elsevier, vol. 159(C), pages 264-276.
    10. Hertzog, Thomas & Poussin, Jean-Christophe & Tangara, Bréhima & Kouriba, Indé & Jamin, Jean-Yves, 2014. "A role playing game to address future water management issues in a large irrigated system: Experience from Mali," Agricultural Water Management, Elsevier, vol. 137(C), pages 1-14.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Mohsin Waqas & Muhammad Waseem & Sikandar Ali & Megersa Kebede Leta & Adnan Noor Shah & Usman Khalid Awan & Syed Hamid Hussain Shah & Tao Yang & Sami Ullah, 2021. "Evaluating the Spatio-Temporal Distribution of Irrigation Water Components for Water Resources Management Using Geo-Informatics Approach," Sustainability, MDPI, vol. 13(15), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Mohsin Waqas & Muhammad Waseem & Sikandar Ali & Megersa Kebede Leta & Adnan Noor Shah & Usman Khalid Awan & Syed Hamid Hussain Shah & Tao Yang & Sami Ullah, 2021. "Evaluating the Spatio-Temporal Distribution of Irrigation Water Components for Water Resources Management Using Geo-Informatics Approach," Sustainability, MDPI, vol. 13(15), pages 1-20, August.
    2. Taheri, Mercedeh & Emadzadeh, Maryam & Gholizadeh, Mohsen & Tajrishi, Masoud & Ahmadi, Mehdi & Moradi, Melika, 2019. "Investigating the temporal and spatial variations of water consumption in Urmia Lake River Basin considering the climate and anthropogenic effects on the agriculture in the basin," Agricultural Water Management, Elsevier, vol. 213(C), pages 782-791.
    3. Muhammad Arfan, 2022. "Mapping Impact of Farmer’s Organisation on the Equity of Water and Land Productivity: Evidence from Pakistan (Article)," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 61(2), pages 275-294.
    4. Kirby, Mac & Ahmad, Mobin-ud-Din & Mainuddin, Mohammed & Khaliq, Tasneem & Cheema, M.J.M., 2017. "Agricultural production, water use and food availability in Pakistan: Historical trends, and projections to 2050," Agricultural Water Management, Elsevier, vol. 179(C), pages 34-46.
    5. Nadeem Ul Haque & Faheem Jehangir Khan (ed.), 2022. "RASTA Local Research, Local Solutions: Political Economy Of Development Reform, Volume VI," PIDE Books, Pakistan Institute of Development Economics, number 2022:6.
    6. Al Zayed, Islam Sabry & Elagib, Nadir Ahmed & Ribbe, Lars & Heinrich, Jürgen, 2016. "Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study," Agricultural Water Management, Elsevier, vol. 177(C), pages 66-76.
    7. Baccar, Mariem & Raynal, Hélène & Sekhar, Muddu & Bergez, Jacques-Eric & Willaume, Magali & Casel, Pierre & Giriraj, P. & Murthy, Sanjeeva & Ruiz, Laurent, 2023. "Dynamics of crop category choices reveal strategies and tactics used by smallholder farmers in India to cope with unreliable water availability," Agricultural Systems, Elsevier, vol. 211(C).
    8. Zamani, Omid & Azadi, Hossein & Mortazavi, Seyed Abolghasem & Balali, Hamid & Moghaddam, Saghi Movahhed & Jurik, Lubos, 2021. "The impact of water-pricing policies on water productivity: Evidence of agriculture sector in Iran," Agricultural Water Management, Elsevier, vol. 245(C).
    9. Xiaojing Ni & Prem B. Parajuli & Ying Ouyang, 2020. "Assessing Agriculture Conservation Practice Impacts on Groundwater Levels at Watershed Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1553-1566, March.
    10. Mohammed Magdy Hamed & Najeebullah Khan & Mohd Khairul Idlan Muhammad & Shamsuddin Shahid, 2022. "Ranking of Empirical Evapotranspiration Models in Different Climate Zones of Pakistan," Land, MDPI, vol. 11(12), pages 1-18, November.
    11. Singh, Ajay, 2016. "Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview," Agricultural Water Management, Elsevier, vol. 174(C), pages 2-10.
    12. Usman Awan & Bernhard Tischbein & Christopher Conrad & Christopher Martius & Mohsin Hafeez, 2011. "Remote Sensing and Hydrological Measurements for Irrigation Performance Assessments in a Water User Association in the Lower Amu Darya River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2467-2485, August.
    13. Wagle, Pradeep & Gowda, Prasanna H. & Northup, Brian K., 2019. "Dynamics of evapotranspiration over a non-irrigated alfalfa field in the Southern Great Plains of the United States," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    14. K. Raneesh & Santosh Thampi, 2013. "A Simple Semi-distributed Hydrologic Model to Estimate Groundwater Recharge in a Humid Tropical Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1517-1532, March.
    15. Xue, Jingyuan & Fulton, Allan & Kisekka, Isaya, 2021. "Evaluating the role of remote sensing-based energy balance models in improving site-specific irrigation management for young walnut orchards," Agricultural Water Management, Elsevier, vol. 256(C).
    16. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," Book Chapters,, International Water Management Institute.
    17. Mohamed Kharrou & Michel Le Page & Ahmed Chehbouni & Vincent Simonneaux & Salah Er-Raki & Lionel Jarlan & Lahcen Ouzine & Said Khabba & Ghani Chehbouni, 2013. "Assessment of Equity and Adequacy of Water Delivery in Irrigation Systems Using Remote Sensing-Based Indicators in Semi-Arid Region, Morocco," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4697-4714, October.
    18. Santiago Castaño & David Sanz & Juan Gómez-Alday, 2013. "Sensitivity of a Groundwater Flow Model to Both Climatic Variations and Management Scenarios in a Semi-arid Region of SE Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2089-2101, May.
    19. Kengo Suzuki & Ryohei Ishiwata, 2022. "Impact of a Carbon Tax on Energy Transition in a Deregulated Market: A Game-Based Experimental Approach," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    20. Acharjee, Tapos Kumar & Ludwig, Fulco & van Halsema, Gerardo & Hellegers, Petra & Supit, Iwan, 2017. "Future changes in water requirements of Boro rice in the face of climate change in North-West Bangladesh," Agricultural Water Management, Elsevier, vol. 194(C), pages 172-183.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:178:y:2016:i:c:p:89-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.