IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v96y2009i2p179-187.html
   My bibliography  Save this article

Agro-environmental evaluation of irrigation land: I. Water use in Bardenas irrigation district (Spain)

Author

Listed:
  • Causapé Valenzuela, Jesús

Abstract

Non-point agrarian contamination makes its allocation to a specific territory difficult. This first part of the study seeks to analyze contamination resulting from water use in 54,438 ha of Bardenas irrigation district included in the Arba basin (BID-Arba). To this end, water balances were carried out in BID-Arba by means of measuring or estimating the main inputs, outputs and water storage between 1 April 2004 and 30 September 2006. Also, the spatial-temporal variability in water use was analyzed. The semester error balances were acceptable (between 11% and -6%), which permits the attribution of the mass of pollutants exported in drainage to the irrigation area evaluated, the objective of the second part of the study. Irrigation efficiency (IE) in BID-Arba was high (90%) despite the fact that Irrigation Sub-District VII (ISD-VII), with considerable flood irrigation drainage (27%), and ISD-XI with considerable losses due to evaporation and wind drift in sprinkler irrigation systems (15%), brought down the average (IEVII = 73%; IEXI = 83%). Irrigation management was inadequate as there was a water deficit (WD) of 9%, partly affected by the 2005 drought (WDApr-05/Sep-05 = 21%) and the low irrigation doses applied in ISD-XI (WDXI = 12%). To sum up, intense re-use of water caused a water use index (percentage of water used by the crops) of 85% which surpassed 90% in periods of drought. Nevertheless, irrigation management should be improved in order to annul the water deficit and to maximize the productivity of the agrarian system.

Suggested Citation

  • Causapé Valenzuela, Jesús, 2009. "Agro-environmental evaluation of irrigation land: I. Water use in Bardenas irrigation district (Spain)," Agricultural Water Management, Elsevier, vol. 96(2), pages 179-187, February.
  • Handle: RePEc:eee:agiwat:v:96:y:2009:i:2:p:179-187
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(08)00196-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lecina, S. & Playan, E. & Isidoro, D. & Dechmi, F. & Causape, J. & Faci, J.M., 2005. "Irrigation evaluation and simulation at the Irrigation District V of Bardenas (Spain)," Agricultural Water Management, Elsevier, vol. 73(3), pages 223-245, May.
    2. Playan, E. & Salvador, R. & Faci, J.M. & Zapata, N. & Martinez-Cob, A. & Sanchez, I., 2005. "Day and night wind drift and evaporation losses in sprinkler solid-sets and moving laterals," Agricultural Water Management, Elsevier, vol. 76(3), pages 139-159, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lecina, S. & Neale, C.M.U. & Merkley, G.P. & Dos Santos, C.A.C., 2011. "Irrigation evaluation based on performance analysis and water accounting at the Bear River Irrigation Project (U.S.A.)," Agricultural Water Management, Elsevier, vol. 98(9), pages 1349-1363, July.
    2. Dechmi, F. & Skhiri, A., 2013. "Evaluation of best management practices under intensive irrigation using SWAT model," Agricultural Water Management, Elsevier, vol. 123(C), pages 55-64.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lecina, S. & Isidoro, D. & Playán, E. & Aragüés, R., 2010. "Irrigation modernization and water conservation in Spain: The case of Riegos del Alto Aragón," Agricultural Water Management, Elsevier, vol. 97(10), pages 1663-1675, October.
    2. Andrés, R. & Cuchí, J.A., 2014. "Analysis of sprinkler irrigation management in the LASESA district, Monegros (Spain)," Agricultural Water Management, Elsevier, vol. 131(C), pages 95-107.
    3. Abrahao, R. & Causapé, J. & García-Garizábal, I. & Merchán, D., 2011. "Implementing irrigation: Water balances and irrigation quality in the Lerma basin (Spain)," Agricultural Water Management, Elsevier, vol. 102(1), pages 97-104.
    4. Hui, Xin & Zheng, Yudong & Yan, Haijun, 2021. "Water distributions of low-pressure sprinklers as affected by the maize canopy under a centre pivot irrigation system," Agricultural Water Management, Elsevier, vol. 245(C).
    5. Ramesh Srivastava & Sheelabhadra Mohanty & Ramlal Singandhuppe & Rajiv Mohanty & Madhu Behera & Lala Ray & Deepika Sahoo, 2010. "Feasibility Evaluation of Pressurized Irrigation in Canal Commands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 3017-3032, September.
    6. Iniesta, F. & Testi, L. & Goldhamer, D.A. & Fereres, E., 2008. "Quantifying reductions in consumptive water use under regulated deficit irrigation in pistachio (Pistacia vera L.)," Agricultural Water Management, Elsevier, vol. 95(7), pages 877-886, July.
    7. Franco-Luesma, Samuel & Álvaro-Fuentes, Jorge & Plaza-Bonilla, Daniel & Arrúe, José Luis & Cantero-Martínez, Carlos & Cavero, José, 2019. "Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 303-311.
    8. Jiménez-Aguirre, M.T. & Isidoro, D., 2018. "Hydrosaline Balance in and Nitrogen Loads from an irrigation district before and after modernization," Agricultural Water Management, Elsevier, vol. 208(C), pages 163-175.
    9. Playan, Enrique & Mateos, Luciano, 2006. "Modernization and optimization of irrigation systems to increase water productivity," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 100-116, February.
    10. Cavero, Jose & Faci, Jose M. & Martínez-Cob, Antonio, 2016. "Relevance of sprinkler irrigation time of the day on alfalfa forage production," Agricultural Water Management, Elsevier, vol. 178(C), pages 304-313.
    11. Ge, Maosheng & Wu, Pute & Zhu, Delan & Zhang, Lin, 2018. "Analysis of kinetic energy distribution of big gun sprinkler applied to continuous moving hose-drawn traveler," Agricultural Water Management, Elsevier, vol. 201(C), pages 118-132.
    12. Merchán, D. & Casalí, J. & Del Valle de Lersundi, J. & Campo-Bescós, M.A. & Giménez, R. & Preciado, B. & Lafarga, A., 2018. "Runoff, nutrients, sediment and salt yields in an irrigated watershed in southern Navarre (Spain)," Agricultural Water Management, Elsevier, vol. 195(C), pages 120-132.
    13. Sanchez, I. & Zapata, N. & Faci, J.M., 2010. "Combined effect of technical, meteorological and agronomical factors on solid-set sprinkler irrigation: I. Irrigation performance and soil water recharge in alfalfa and maize," Agricultural Water Management, Elsevier, vol. 97(10), pages 1571-1581, October.
    14. Zapata, N. & Playan, E. & Martinez-Cob, A. & Sanchez, I. & Faci, J.M. & Lecina, S., 2007. "From on-farm solid-set sprinkler irrigation design to collective irrigation network design in windy areas," Agricultural Water Management, Elsevier, vol. 87(2), pages 187-199, January.
    15. Playan, E. & Cavero, J. & Mantero, I. & Salvador, R. & Lecina, S. & Faci, J.M. & Andres, J. & Salvador, V. & Cardena, G. & Ramon, S. & Lacueva, J.L. & Tejero, M. & Ferri, J. & Martinez-Cob, A., 2007. "A database program for enhancing irrigation district management in the Ebro Valley (Spain)," Agricultural Water Management, Elsevier, vol. 87(2), pages 209-216, January.
    16. Baifus Manke, Emanuele & Nörenberg, Bernardo Gomes & Faria, Lessandro Coll & Tarjuelo, José Maria & Colombo, Alberto & Chagas Neta, Maria Clotilde Carré & Parfitt, José Maria Barbat, 2019. "Wind drift and evaporation losses of a mechanical lateral-move irrigation system: Oscillating plate versus fixed spray plate sprinklers," Agricultural Water Management, Elsevier, vol. 225(C).
    17. Barros, R. & Isidoro, D. & Aragüés, R., 2011. "Long-term water balances in La Violada Irrigation District (Spain): II. Analysis of irrigation performance," Agricultural Water Management, Elsevier, vol. 98(10), pages 1569-1576, August.
    18. Sanchez, I. & Zapata, N. & Faci, J.M., 2010. "Combined effect of technical, meteorological and agronomical factors on solid-set sprinkler irrigation: II. Modifications of the wind velocity and of the water interception plane by the crop canopy," Agricultural Water Management, Elsevier, vol. 97(10), pages 1591-1601, October.
    19. Xiang, Qingjiang & Qureshi, Waqar Ahmed & Tunio, Mazhar Hussain & Solangi, Kashif Ali & Xu, Zhengdian & Lakhiar, Imran Ali, 2021. "low-pressure drop size distribution characterization of impact sprinkler jet nozzles with and without aeration," Agricultural Water Management, Elsevier, vol. 243(C).
    20. Fernandez, M.D. & Gonzalez, A.M. & Carreno, J. & Perez, C. & Bonachela, S., 2007. "Analysis of on-farm irrigation performance in Mediterranean greenhouses," Agricultural Water Management, Elsevier, vol. 89(3), pages 251-260, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:96:y:2009:i:2:p:179-187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.