IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v98y2011i10p1569-1576.html
   My bibliography  Save this article

Long-term water balances in La Violada Irrigation District (Spain): II. Analysis of irrigation performance

Author

Listed:
  • Barros, R.
  • Isidoro, D.
  • Aragüés, R.

Abstract

The analysis of long-term irrigation performance series is a valuable tool to improve irrigation management and efficiency. This work focuses in the assessment of irrigation performance indices along years 1995-2008, and the cause-effect relationships with irrigation modernization works taking place in the 4000Â ha surface-irrigated La Violada Irrigation District (VID). Irrigation management was poor, as shown by the low mean seasonal irrigation consumptive use coefficient (ICUCÂ =Â 51%) and the high relative water deficit (RWDÂ =Â 20%) and drainage fraction (DRFÂ =Â 54%). April had the poorest irrigation performance because corn (with low water demand in this month) was irrigated to promote its emergence, whereas winter grains (with high water demands in this month) were not fully irrigated in water-scarce years. Corn, highly sensitive to water stress, was the crop with best irrigation performance because it was preferentially irrigated to minimize yield losses. The construction of a new elevated canal that decreased seepage and drainage fractions, the entrance in operation of six internal reservoirs that would increase irrigation scheduling flexibility, and the on-going transformation from surface to sprinkler irrigation systems are critical changes in VID that should lead to improved ICUC, lower RWD and lower DRF. The implications of these modernization works on the conservation of water quantity and quality within and outside VID is further discussed.

Suggested Citation

  • Barros, R. & Isidoro, D. & Aragüés, R., 2011. "Long-term water balances in La Violada Irrigation District (Spain): II. Analysis of irrigation performance," Agricultural Water Management, Elsevier, vol. 98(10), pages 1569-1576, August.
  • Handle: RePEc:eee:agiwat:v:98:y:2011:i:10:p:1569-1576
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741100103X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Molden, D., 1997. "Accounting for water use and productivity," IWMI Books, Reports H021374, International Water Management Institute.
    2. Lecina, S. & Playan, E. & Isidoro, D. & Dechmi, F. & Causape, J. & Faci, J.M., 2005. "Irrigation evaluation and simulation at the Irrigation District V of Bardenas (Spain)," Agricultural Water Management, Elsevier, vol. 73(3), pages 223-245, May.
    3. Keller, A. A., 1995. "Effective efficiency: a water use efficiency concept for allocating freshwater resources," IWMI Working Papers H043180, International Water Management Institute.
    4. Isidoro, D. & Quilez, D. & Aragues, R., 2004. "Water balance and irrigation performance analysis: La Violada irrigation district (Spain) as a case study," Agricultural Water Management, Elsevier, vol. 64(2), pages 123-142, January.
    5. Tedeschi, A. & Beltran, A. & Aragues, R., 2001. "Irrigation management and hydrosalinity balance in a semi-arid area of the middle Ebro river basin (Spain)," Agricultural Water Management, Elsevier, vol. 49(1), pages 31-50, July.
    6. Lorite, I.J. & Mateos, L. & Orgaz, F. & Fereres, E., 2007. "Assessing deficit irrigation strategies at the level of an irrigation district," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 51-60, July.
    7. Faci, J. M. & Bensaci, A. & Slatni, A. & Playan, E., 2000. "A case study for irrigation modernisation: I. Characterisation of the district and analysis of water delivery records," Agricultural Water Management, Elsevier, vol. 42(3), pages 313-334, January.
    8. Keller, A. A., 1995. "Effective efficiency: a water use efficiency concept for allocating freshwater resources," IWMI Working Papers H044344, International Water Management Institute.
    9. Seckler, D. & Molden, D. & Sakthivadivel, R., 2003. "The concept of efficiency in water resources management and policy," IWMI Books, Reports H032634, International Water Management Institute.
    10. Rao, P. S., 1993. "Review of selected literature on indicators of irrigation performance," IWMI Books, Reports H013467, International Water Management Institute.
    11. Perry, C. J., 1999. "The IWMI water resources paradigm - definitions and implications," Agricultural Water Management, Elsevier, vol. 40(1), pages 45-50, March.
    12. Playan, E. & Slatni, A. & Castillo, R. & Faci, J. M., 2000. "A case study for irrigation modernisation: II: Scenario analysis," Agricultural Water Management, Elsevier, vol. 42(3), pages 335-354, January.
    13. Molden, David J., 1997. "Accounting for water use and productivity," IWMI Books, International Water Management Institute, number 113623.
    14. Kijne, J. W. & Barker, R. & Molden. D., 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, Reports H032631, International Water Management Institute.
    15. Dechmi, F. & Playan, E. & Faci, J. M. & Tejero, M., 2003. "Analysis of an irrigation district in northeastern Spain: I. Characterisation and water use assessment," Agricultural Water Management, Elsevier, vol. 61(2), pages 75-92, June.
    16. Karatas, Bekir S. & Akkuzu, Erhan & Unal, Halil B. & Asik, Serafettin & Avci, Musa, 2009. "Using satellite remote sensing to assess irrigation performance in Water User Associations in the Lower Gediz Basin, Turkey," Agricultural Water Management, Elsevier, vol. 96(6), pages 982-990, June.
    17. Hanson, Blaine & Putnam, Dan & Snyder, Richard, 2007. "Deficit irrigation of alfalfa as a strategy for providing water for water-short areas," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 73-80, October.
    18. Kijne, Jacob W. & Barker, Randolph & Molden, David J. (ed.), 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, International Water Management Institute, number 138054.
    19. Perry, Chris & Steduto, Pasquale & Allen, Richard. G. & Burt, Charles M., 2009. "Increasing productivity in irrigated agriculture: Agronomic constraints and hydrological realities," Agricultural Water Management, Elsevier, vol. 96(11), pages 1517-1524, November.
    20. Lecina, S. & Isidoro, D. & Playán, E. & Aragüés, R., 2010. "Irrigation modernization and water conservation in Spain: The case of Riegos del Alto Aragón," Agricultural Water Management, Elsevier, vol. 97(10), pages 1663-1675, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ibrikci, Hayriye & Cetin, Mahmut & Karnez, Ebru & Flügel, Wolfgang Albert & Tilkici, Burak & Bulbul, Yunus & Ryan, John, 2015. "Irrigation-induced nitrate losses assessed in a Mediterranean irrigation district," Agricultural Water Management, Elsevier, vol. 148(C), pages 223-231.
    2. Barros, R. & Isidoro, D. & Aragüés, R., 2011. "Long-term water balances in La Violada irrigation district (Spain): I. Sequential assessment and minimization of closing errors," Agricultural Water Management, Elsevier, vol. 102(1), pages 35-45.
    3. Merchán, D. & Causapé, J. & Abrahão, R. & García-Garizábal, I., 2015. "Assessment of a newly implemented irrigated area (Lerma Basin, Spain) over a 10-year period. I: Water balances and irrigation performance," Agricultural Water Management, Elsevier, vol. 158(C), pages 277-287.
    4. Andrés, R. & Cuchí, J.A., 2014. "Analysis of sprinkler irrigation management in the LASESA district, Monegros (Spain)," Agricultural Water Management, Elsevier, vol. 131(C), pages 95-107.
    5. Duarte, A.C. & Mateos, L., 2022. "How changes in cropping intensity affect water usage in an irrigated Mediterranean catchment," Agricultural Water Management, Elsevier, vol. 260(C).
    6. Merchán, D. & Casalí, J. & Del Valle de Lersundi, J. & Campo-Bescós, M.A. & Giménez, R. & Preciado, B. & Lafarga, A., 2018. "Runoff, nutrients, sediment and salt yields in an irrigated watershed in southern Navarre (Spain)," Agricultural Water Management, Elsevier, vol. 195(C), pages 120-132.
    7. Malik, Wafa & Isla, Ramon & Dechmi, Farida, 2019. "DSSAT-CERES-maize modelling to improve irrigation and nitrogen management practices under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 213(C), pages 298-308.
    8. Jiménez-Aguirre, M.T. & Isidoro, D., 2018. "Hydrosaline Balance in and Nitrogen Loads from an irrigation district before and after modernization," Agricultural Water Management, Elsevier, vol. 208(C), pages 163-175.
    9. Sánchez-Chóliz, J. & Sarasa, C., 2013. "Análisis de los recursos hídricos de Riegos del Alto Aragón (Huesca) en la primera década del siglo XXI," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 13(01).
    10. Kisekka, Isaya & Kandelous, Maziar M. & Sanden, Blake & Hopmans, Jan W., 2019. "Uncertainties in leaching assessment in micro-irrigated fields using water balance approach," Agricultural Water Management, Elsevier, vol. 213(C), pages 107-115.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lecina, S. & Isidoro, D. & Playán, E. & Aragüés, R., 2010. "Irrigation modernization and water conservation in Spain: The case of Riegos del Alto Aragón," Agricultural Water Management, Elsevier, vol. 97(10), pages 1663-1675, October.
    2. Lecina, S. & Neale, C.M.U. & Merkley, G.P. & Dos Santos, C.A.C., 2011. "Irrigation evaluation based on performance analysis and water accounting at the Bear River Irrigation Project (U.S.A.)," Agricultural Water Management, Elsevier, vol. 98(9), pages 1349-1363, July.
    3. Playan, Enrique & Mateos, Luciano, 2006. "Modernization and optimization of irrigation systems to increase water productivity," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 100-116, February.
    4. Andrés, R. & Cuchí, J.A., 2014. "Analysis of sprinkler irrigation management in the LASESA district, Monegros (Spain)," Agricultural Water Management, Elsevier, vol. 131(C), pages 95-107.
    5. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    6. Huang, Feng & Li, Baoguo, 2010. "Assessing grain crop water productivity of China using a hydro-model-coupled-statistics approach: Part I: Method development and validation," Agricultural Water Management, Elsevier, vol. 97(7), pages 1077-1092, July.
    7. Ghahroodi, E. Mokari & Noory, H. & Liaghat, A.M., 2015. "Performance evaluation study and hydrologic and productive analysis of irrigation systems at the Qazvin irrigation network (Iran)," Agricultural Water Management, Elsevier, vol. 148(C), pages 189-195.
    8. Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
    9. Salvador, R. & Martínez-Cob, A. & Cavero, J. & Playán, E., 2011. "Seasonal on-farm irrigation performance in the Ebro basin (Spain): Crops and irrigation systems," Agricultural Water Management, Elsevier, vol. 98(4), pages 577-587, February.
    10. Barros, R. & Isidoro, D. & Aragüés, R., 2011. "Long-term water balances in La Violada irrigation district (Spain): I. Sequential assessment and minimization of closing errors," Agricultural Water Management, Elsevier, vol. 102(1), pages 35-45.
    11. van der Kooij, Saskia & Zwarteveen, Margreet & Boesveld, Harm & Kuper, Marcel, 2013. "The efficiency of drip irrigation unpacked," Agricultural Water Management, Elsevier, vol. 123(C), pages 103-110.
    12. Charlotte Fraiture, 2007. "Integrated water and food analysis at the global and basin level. An application of WATERSIM," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 185-198, January.
    13. Kazem Attar, Hasti & Noory, Hamideh & Ebrahimian, Hamed & Liaghat, Abdol-Majid, 2020. "Efficiency and productivity of irrigation water based on water balance considering quality of return flows," Agricultural Water Management, Elsevier, vol. 231(C).
    14. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    15. Jiménez-Aguirre, M.T. & Isidoro, D., 2018. "Hydrosaline Balance in and Nitrogen Loads from an irrigation district before and after modernization," Agricultural Water Management, Elsevier, vol. 208(C), pages 163-175.
    16. María Blanco & Benjamin Van Doorslaer & Wolfgang Britz & Heinz-Peter Witzke, 2012. "Exploring the feasibility of integrating water issues into the CAPRI model," JRC Research Reports JRC77058, Joint Research Centre.
    17. Mohamed Kharrou & Michel Le Page & Ahmed Chehbouni & Vincent Simonneaux & Salah Er-Raki & Lionel Jarlan & Lahcen Ouzine & Said Khabba & Ghani Chehbouni, 2013. "Assessment of Equity and Adequacy of Water Delivery in Irrigation Systems Using Remote Sensing-Based Indicators in Semi-Arid Region, Morocco," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4697-4714, October.
    18. van Halsema, Gerardo E. & Vincent, Linden, 2012. "Efficiency and productivity terms for water management: A matter of contextual relativism versus general absolutism," Agricultural Water Management, Elsevier, vol. 108(C), pages 9-15.
    19. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    20. Muhammad Usman & Talha Mahmood & Christopher Conrad & Habib Ullah Bodla, 2020. "Remote Sensing and Modelling Based Framework for Valuing Irrigation System Efficiency and Steering Indicators of Consumptive Water Use in an Irrigated Region," Sustainability, MDPI, vol. 12(22), pages 1-33, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:98:y:2011:i:10:p:1569-1576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.