IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v244y2021ics0378377420320801.html
   My bibliography  Save this article

Evaluation of crop coefficient and evapotranspiration data for sugar beets from landsat surface reflectances using micrometeorological measurements and weighing lysimetry

Author

Listed:
  • Wang, Tianxin
  • Melton, Forrest S.
  • Pôças, Isabel
  • Johnson, Lee F.
  • Thao, Touyee
  • Post, Kirk
  • Cassel-Sharma, Florence

Abstract

In California and other agricultural regions that are facing challenges with water scarcity, accurate estimates of crop evapotranspiration (ETc) can support agricultural entities in ongoing efforts to improve on-farm water use efficiency. Remote sensing approaches for calculating ETc can be used to support wide area mapping of crop coefficients and ETc with the goal of increasing access to spatially and temporally distributed information for these variables, and advancing the use of evapotranspiration (ET) data in irrigation scheduling and management. We briefly review past work on the derivation of crop coefficients and ETc data from satellite-derived vegetation indices (VI) and evaluate the accuracy of a VI-based approach for calculation of ETc using a well instrumented, drip irrigated sugar beet (Beta vulgaris) field in the California Central Valley as a demonstration case. Sugar beets are grown around the world for sugar production, and are also being evaluated in California as a potential biofuel crop as well as for their ability to scavenge nitrogen from the soil, with important potential benefits for reduction of nitrate leaching from agricultural fields during the winter months. In this study, we evaluated the accuracy of ETc data from the Satellite Irrigation Management Support (SIMS) framework for sugar beets using ET data from a weighing lysimeter and a flux station instrumented with micrometeorological instrumentation. We used the Allen and Pereira (A&P) approach, which was developed to estimate single and basal crop coefficients from crop fractional cover (fc) and height, and combined with satellite-derived fc data and grass reference ET (ETo) data as implemented within SIMS to estimate daily ETc from SIMS (ETc-SIMS) for the sugar beet crop. The accuracy of the daily ETc-SIMS data was evaluated against daily actual ET data from the weighing lysimeter (ETa-lys) and actual ET calculated using an energy balance approach from micrometeorological instrumentation (ETa-eb). Over the course of the 181-day production cycle, ETc-SIMS totaled 737.1 mm, which was within 7.7% of total ETa-lys and 3.7% of ETa-eb. On a daily timestep, SIMS mean bias error was −0.31 mm/day relative to ETa-lys, and 0.15 mm/day relative to ETa-eb. The results from this study highlight the potential utility of applying satellite-based fc data coupled with the A&P approach to estimate ETc for drip-irrigated crops.

Suggested Citation

  • Wang, Tianxin & Melton, Forrest S. & Pôças, Isabel & Johnson, Lee F. & Thao, Touyee & Post, Kirk & Cassel-Sharma, Florence, 2021. "Evaluation of crop coefficient and evapotranspiration data for sugar beets from landsat surface reflectances using micrometeorological measurements and weighing lysimetry," Agricultural Water Management, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:agiwat:v:244:y:2021:i:c:s0378377420320801
    DOI: 10.1016/j.agwat.2020.106533
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420320801
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106533?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. González-Dugo, M.P. & Escuin, S. & Cano, F. & Cifuentes, V. & Padilla, F.L.M. & Tirado, J.L. & Oyonarte, N. & Fernández, P. & Mateos, L., 2013. "Monitoring evapotranspiration of irrigated crops using crop coefficients derived from time series of satellite images. II. Application on basin scale," Agricultural Water Management, Elsevier, vol. 125(C), pages 92-104.
    2. Anapalli, Saseendran S. & Green, Timothy R. & Reddy, Krishna N. & Gowda, Prasanna H. & Sui, Ruixiu & Fisher, Daniel K. & Moorhead, Jerry E. & Marek, Gary W., 2018. "Application of an energy balance method for estimating evapotranspiration in cropping systems," Agricultural Water Management, Elsevier, vol. 204(C), pages 107-117.
    3. Gonzalez-Dugo, M.P. & Mateos, L., 2008. "Spectral vegetation indices for benchmarking water productivity of irrigated cotton and sugarbeet crops," Agricultural Water Management, Elsevier, vol. 95(1), pages 48-58, January.
    4. Mateos, L. & González-Dugo, M.P. & Testi, L. & Villalobos, F.J., 2013. "Monitoring evapotranspiration of irrigated crops using crop coefficients derived from time series of satellite images. I. Method validation," Agricultural Water Management, Elsevier, vol. 125(C), pages 81-91.
    5. Drerup, Philipp & Brueck, Holger & Scherer, Heinrich W., 2017. "Evapotranspiration of winter wheat estimated with the FAO 56 approach and NDVI measurements in a temperate humid climate of NW Europe," Agricultural Water Management, Elsevier, vol. 192(C), pages 180-188.
    6. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Wang, T. & López-Urrea, R. & Cancela, J.J. & Allen, R.G., 2020. "Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data," Agricultural Water Management, Elsevier, vol. 241(C).
    7. Pôças, I. & Calera, A. & Campos, I. & Cunha, M., 2020. "Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches," Agricultural Water Management, Elsevier, vol. 233(C).
    8. Tasumi, Masahiro & Allen, Richard G., 2007. "Satellite-based ET mapping to assess variation in ET with timing of crop development," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 54-62, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    2. He, Ruyan & Jin, Yufang & Jiang, Jinbao & Xu, Meng & Jia, Sen, 2022. "Sensitivity of METRIC-based tree crop evapotranspiration estimation to meteorology, land surface parameters and domain size," Agricultural Water Management, Elsevier, vol. 271(C).
    3. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    4. Wagner Wolff, & Francisco, João Paulo & Flumignan, Danilton Luiz & Marin, Fábio Ricardo & Folegatti, Marcos Vinícius, 2022. "Optimized algorithm for evapotranspiration retrieval via remote sensing," Agricultural Water Management, Elsevier, vol. 262(C).
    5. Pei Wang & Jingjing Ma & Juanjuan Ma & Haitao Sun & Qi Chen, 2021. "A Novel Approach for the Simulation of Reference Evapotranspiration and Its Partitioning," Agriculture, MDPI, vol. 11(5), pages 1-12, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salgado, Ramiro & Mateos, Luciano, 2021. "Evaluation of different methods of estimating ET for the performance assessment of irrigation schemes," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Garrido-Rubio, Jesús & González-Piqueras, Jose & Campos, Isidro & Osann, Anna & González-Gómez, Laura & Calera, Alfonso, 2020. "Remote sensing–based soil water balance for irrigation water accounting at plot and water user association management scale," Agricultural Water Management, Elsevier, vol. 238(C).
    3. Pereira, L.S. & Paredes, P. & López-Urrea, R. & Hunsaker, D.J. & Mota, M. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    5. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    6. Mahmoud, Shereif H. & Gan, Thian Yew, 2019. "Irrigation water management in arid regions of Middle East: Assessing spatio-temporal variation of actual evapotranspiration through remote sensing techniques and meteorological data," Agricultural Water Management, Elsevier, vol. 212(C), pages 35-47.
    7. Pôças, I. & Calera, A. & Campos, I. & Cunha, M., 2020. "Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches," Agricultural Water Management, Elsevier, vol. 233(C).
    8. Zhang, Yu & Han, Wenting & Zhang, Huihui & Niu, Xiaotao & Shao, Guomin, 2023. "Evaluating maize evapotranspiration using high-resolution UAV-based imagery and FAO-56 dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 275(C).
    9. Mokhtari, Ali & Noory, Hamideh & Vazifedoust, Majid & Bahrami, Mahdi, 2018. "Estimating net irrigation requirement of winter wheat using model- and satellite-based single and basal crop coefficients," Agricultural Water Management, Elsevier, vol. 208(C), pages 95-106.
    10. Mokhtari, Ali & Noory, Hamideh & Vazifedoust, Majid & Palouj, Mojtaba & Bakhtiari, Atousa & Barikani, Elham & Zabihi Afrooz, Ramezan Ali & Fereydooni, Fatemeh & Sadeghi Naeni, Ali & Pourshakouri, Farr, 2019. "Evaluation of single crop coefficient curves derived from Landsat satellite images for major crops in Iran," Agricultural Water Management, Elsevier, vol. 218(C), pages 234-249.
    11. Consoli, S. & Vanella, D., 2014. "Mapping crop evapotranspiration by integrating vegetation indices into a soil water balance model," Agricultural Water Management, Elsevier, vol. 143(C), pages 71-81.
    12. Carpintero, E. & Mateos, L. & Andreu, A. & González-Dugo, M.P., 2020. "Effect of the differences in spectral response of Mediterranean tree canopies on the estimation of evapotranspiration using vegetation index-based crop coefficients," Agricultural Water Management, Elsevier, vol. 238(C).
    13. Campos, Isidro & Neale, Christopher M.U. & Suyker, Andrew E. & Arkebauer, Timothy J. & Gonçalves, Ivo Z., 2017. "Reflectance-based crop coefficients REDUX: For operational evapotranspiration estimates in the age of high producing hybrid varieties," Agricultural Water Management, Elsevier, vol. 187(C), pages 140-153.
    14. Consoli, S. & Licciardello, F. & Vanella, D. & Pasotti, L. & Villani, G. & Tomei, F., 2016. "Testing the water balance model criteria using TDR measurements, micrometeorological data and satellite-based information," Agricultural Water Management, Elsevier, vol. 170(C), pages 68-80.
    15. French, Andrew N. & Hunsaker, Douglas J. & Sanchez, Charles A. & Saber, Mazin & Gonzalez, Juan Roberto & Anderson, Ray, 2020. "Satellite-based NDVI crop coefficients and evapotranspiration with eddy covariance validation for multiple durum wheat fields in the US Southwest," Agricultural Water Management, Elsevier, vol. 239(C).
    16. Zinkernagel, Jana & Maestre-Valero, Jose. F. & Seresti, Sogol Y. & Intrigliolo, Diego S., 2020. "New technologies and practical approaches to improve irrigation management of open field vegetable crops," Agricultural Water Management, Elsevier, vol. 242(C).
    17. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    18. Pei Wang & Jingjing Ma & Juanjuan Ma & Haitao Sun & Qi Chen, 2021. "A Novel Approach for the Simulation of Reference Evapotranspiration and Its Partitioning," Agriculture, MDPI, vol. 11(5), pages 1-12, April.
    19. Campos, Isidro & Balbontín, Claudio & González-Piqueras, Jose & González-Dugo, Maria P. & Neale, Christopher M.U. & Calera, Alfonso, 2016. "Combining a water balance model with evapotranspiration measurements to estimate total available soil water in irrigated and rainfed vineyards," Agricultural Water Management, Elsevier, vol. 165(C), pages 141-152.
    20. Teixeira, Antônio & Leivas, Janice & Struiving, Tiago & Reis, João & Simão, Fúlvio, 2021. "Energy balance and irrigation performance assessments in lemon orchards by applying the SAFER algorithm to Landsat 8 images," Agricultural Water Management, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:244:y:2021:i:c:s0378377420320801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.