IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v293y2024ics0378377424000416.html
   My bibliography  Save this article

A coupled hourly water-carbon flux model at plot and field scales for water-saving irrigated rice paddy

Author

Listed:
  • Lv, Yuping
  • Gu, Linhui
  • Xu, Junzeng
  • Liu, Xiaoyin

Abstract

Based on spot-scale measurements of lysimeter-based water fluxes and chamber-based carbon fluxes (ETWML or FSTC), and field- scale measurements of eddy covariance-based water and carbon fluxes (ETEC or FEC), a coupled water-carbon flux model was developed to predicted simultaneously hourly water and carbon fluxes at either spot or field scale in the water-saving irrigated paddy in Tai Lake Region of China. The coupled model integrated Penman-Monteith and Farquhar-von Caemmerer-Berry (FvCB) sub-models with the Jarvis sub-model, and was calibrated based on measured fluxes in 2015 and validated using data in 2016–2017. The performance of the coupled model was assessed by comparing simulated values with measured hourly ETWML, FSTC, ETEC and FEC under various conditions, including day/night/all day periods, different canopy coverage levels, and seasonal variations during rice seasons. The results revealed notable differences in the parameters of the Jarvis sub-model between plot and field scales. The ratio of leaf dark respiration to leaf maximum carboxylation rate were respectively calibrated as 0.041 and 0.047 to reflect the respiration of soil-vegetation system at plot and field scales. The maximum carboxylation rate (Vm) reached its peak during the jointing-booting stage and then decreased until the end of the rice season, and the Vm values at the plot scale were considerably higher than those at the field scale. The coupled model respectively exhibited poor and acceptable performance in estimating water and carbon fluxes during nighttime, and performed well during daytime or throughout the day. Additionally, the coupled model performed much better in estimating diurnal and seasonal variations in fluxes under high leaf area index conditions compared to low leaf area index conditions.

Suggested Citation

  • Lv, Yuping & Gu, Linhui & Xu, Junzeng & Liu, Xiaoyin, 2024. "A coupled hourly water-carbon flux model at plot and field scales for water-saving irrigated rice paddy," Agricultural Water Management, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:agiwat:v:293:y:2024:i:c:s0378377424000416
    DOI: 10.1016/j.agwat.2024.108706
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424000416
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108706?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Chunan & Cai, Jiabing & Zhang, Baozhong & Chang, Hongfang & Wei, Zheng, 2023. "Evaluation and verification of two evapotranspiration models based on precision screening and partitioning of field temperature data," Agricultural Water Management, Elsevier, vol. 278(C).
    2. Xu, Junzeng & Liu, Xiaoyin & Yang, Shihong & Qi, Zhiming & Wang, Yijiang, 2017. "Modeling rice evapotranspiration under water-saving irrigation by calibrating canopy resistance model parameters in the Penman-Monteith equation," Agricultural Water Management, Elsevier, vol. 182(C), pages 55-66.
    3. Liu, Xiaoyin & Xu, Junzeng & Liu, Boyi & Wang, Weiguang & Li, Yawei, 2019. "A novel model of water-heat coupling for water-saving irrigated rice fields based on water and energy balance: Model formulation and verification," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    4. Li, Xiaojie & Kang, Shaozhong & Li, Fusheng & Jiang, Xuelian & Tong, Ling & Ding, Risheng & Li, Sien & Du, Taisheng, 2016. "Applying segmented Jarvis canopy resistance into Penman-Monteith model improves the accuracy of estimated evapotranspiration in maize for seed production with film-mulching in arid area," Agricultural Water Management, Elsevier, vol. 178(C), pages 314-324.
    5. Xu, Junzeng & Peng, Shizhang & Yang, Shihong & Wang, Weiguang, 2012. "Ammonia volatilization losses from a rice paddy with different irrigation and nitrogen managements," Agricultural Water Management, Elsevier, vol. 104(C), pages 184-192.
    6. Yang, Shihong & Xu, Junzeng & Liu, Xiaoyin & Zhang, Jiangang & Wang, Yijiang, 2016. "Variations of carbon dioxide exchange in paddy field ecosystem under water-saving irrigation in Southeast China," Agricultural Water Management, Elsevier, vol. 166(C), pages 42-52.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rawat, Kishan Singh & Bala, Anju & Singh, Sudhir Kumar & Pal, Raj Kumar, 2017. "Quantification of wheat crop evapotranspiration and mapping: A case study from Bhiwani District of Haryana, India," Agricultural Water Management, Elsevier, vol. 187(C), pages 200-209.
    2. Han, Huanhao & Gao, Rong & Cui, Yuanlai & Gu, Shixiang, 2022. "A semi-empirical semi-process model of ammonia volatilization from paddy fields under different irrigation modes and urea application regimes," Agricultural Water Management, Elsevier, vol. 272(C).
    3. Liu, Xiaoyin & Xu, Junzeng & Liu, Boyi & Wang, Weiguang & Li, Yawei, 2019. "A novel model of water-heat coupling for water-saving irrigated rice fields based on water and energy balance: Model formulation and verification," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    4. Han, Huanhao & Gao, Rong & Cui, Yuanlai & Gu, Shixiang, 2021. "Transport and transformation of water and nitrogen under different irrigation modes and urea application regimes in paddy fields," Agricultural Water Management, Elsevier, vol. 255(C).
    5. Nishida, Kazuhiro & Yoshida, Shuichiro & Shiozawa, Sho, 2021. "Numerical model to predict water temperature distribution in a paddy rice field," Agricultural Water Management, Elsevier, vol. 245(C).
    6. Nie, Tangzhe & Huang, Jianyi & Zhang, Zhongxue & Chen, Peng & Li, Tiecheng & Dai, Changlei, 2023. "The inhibitory effect of a water-saving irrigation regime on CH4 emission in Mollisols under straw incorporation for 5 consecutive years," Agricultural Water Management, Elsevier, vol. 278(C).
    7. Hasan Mirzakhaninafchi & Manjeet Singh & Anoop Kumar Dixit & Apoorv Prakash & Shikha Sharda & Jugminder Kaur & Ali Mirzakhani Nafchi, 2022. "Performance Assessment of a Sensor-Based Variable-Rate Real-Time Fertilizer Applicator for Rice Crop," Sustainability, MDPI, vol. 14(18), pages 1-25, September.
    8. Han, Yu & Zhang, Zhongxue & Li, Tiecheng & Chen, Peng & Nie, Tangzhe & Zhang, Zuohe & Du, Sicheng, 2023. "Straw return alleviates the greenhouse effect of paddy fields by increasing soil organic carbon sequestration under water-saving irrigation," Agricultural Water Management, Elsevier, vol. 287(C).
    9. Shan, Linan & He, Yunfeng & Chen, Jie & Huang, Qian & Lian, Xu & Wang, Hongcai & Liu, Yili, 2015. "Nitrogen surface runoff losses from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China," Agricultural Water Management, Elsevier, vol. 159(C), pages 255-263.
    10. Wang, Fei & Lai, Hexin & Li, Yanbin & Feng, Kai & Zhang, Zezhong & Tian, Qingqing & Zhu, Xiaomeng & Yang, Haibo, 2022. "Dynamic variation of meteorological drought and its relationships with agricultural drought across China," Agricultural Water Management, Elsevier, vol. 261(C).
    11. Chen, Peng & Xu, Junzeng & Zhang, Zhongxue & Nie, Tangzhe & Wang, Kechun & Guo, Hang, 2022. "Where the straw-derived nitrogen gone in paddy field subjected to different irrigation regimes and straw placement depths? Evidence from 15N labeling," Agricultural Water Management, Elsevier, vol. 273(C).
    12. Xing, Liwen & Cui, Ningbo & Liu, Chunwei & Zhao, Lu & Guo, Li & Du, Taisheng & Zhan, Cun & Wu, Zongjun & Wen, Shenglin & Jiang, Shouzheng, 2022. "Estimation of daily apple tree transpiration in the Loess Plateau region of China using deep learning models," Agricultural Water Management, Elsevier, vol. 273(C).
    13. Wang, Weiguang & Yu, Zhongbo & Zhang, Wei & Shao, Quanxi & Zhang, Yiwei & Luo, Yufeng & Jiao, Xiyun & Xu, Junzeng, 2014. "Responses of rice yield, irrigation water requirement and water use efficiency to climate change in China: Historical simulation and future projections," Agricultural Water Management, Elsevier, vol. 146(C), pages 249-261.
    14. Yu, Haichao & Li, Sien & Ding, Jie & Yang, Tianyi & Wang, Yuexin, 2023. "Water use efficiency and its drivers of two typical cash crops in an arid area of Northwest China," Agricultural Water Management, Elsevier, vol. 287(C).
    15. Zhu, Yan & Yang, Jinzhong & Ye, Ming & Sun, Huaiwei & Shi, Liangsheng, 2017. "Development and application of a fully integrated model for unsaturated-saturated nitrogen reactive transport," Agricultural Water Management, Elsevier, vol. 180(PA), pages 35-49.
    16. Wu, Yinshan & Jiang, Jie & Zhang, Xiufeng & Zhang, Jiayi & Cao, Qiang & Tian, Yongchao & Zhu, Yan & Cao, Weixing & Liu, Xiaojun, 2023. "Combining machine learning algorithm and multi-temporal temperature indices to estimate the water status of rice," Agricultural Water Management, Elsevier, vol. 289(C).
    17. Alhaj Hamoud, Yousef & Shaghaleh, Hiba & Sheteiwy, Mohamed & Guo, Xiangping & Elshaikh, Nazar A. & Ullah Khan, Nasr & Oumarou, Abdoulaye & Rahim, Shah Fahad, 2019. "Impact of alternative wetting and soil drying and soil clay content on the morphological and physiological traits of rice roots and their relationships to yield and nutrient use-efficiency," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    18. Yan, Jun & Wu, Qixia & Qi, Dongliang & Zhu, Jianqiang, 2022. "Rice yield, water productivity, and nitrogen use efficiency responses to nitrogen management strategies under supplementary irrigation for rain-fed rice cultivation," Agricultural Water Management, Elsevier, vol. 263(C).
    19. Xu, Guo-wei & Lu, Da-Ke & Wang, He-Zheng & Li, Youjun, 2018. "Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate," Agricultural Water Management, Elsevier, vol. 203(C), pages 385-394.
    20. Xu, Junzeng & Liu, Xiaoyin & Yang, Shihong & Qi, Zhiming & Wang, Yijiang, 2017. "Modeling rice evapotranspiration under water-saving irrigation by calibrating canopy resistance model parameters in the Penman-Monteith equation," Agricultural Water Management, Elsevier, vol. 182(C), pages 55-66.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:293:y:2024:i:c:s0378377424000416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.